Feed aggregator

How environmental groups lost Newsom to Big Oil

ClimateWire News - Fri, 09/12/2025 - 6:27am
Environmental justice groups were riding momentum against the industry, but then refinery closure announcements changed everything.

First climate case involving anti-Mafia law is dismissed

ClimateWire News - Fri, 09/12/2025 - 6:26am
The lawsuit by Puerto Rico alleged that oil companies violated RICO statutes after Hurricane Maria killed 3,000 people in 2017.

California likely to approve long-sought extension of climate program

ClimateWire News - Fri, 09/12/2025 - 6:26am
The state Legislature will vote Saturday on renewing its cap-and-trade program through 2045, which could lead to linking with Washington state’s program.

The Trump-aligned climate skeptics advising Britain’s Nigel Farage

ClimateWire News - Fri, 09/12/2025 - 6:24am
The U.K. boss of the Heartland Institute said she had been influencing Reform UK “at the highest level.”

UK rejects plan to deflect sun’s rays to curb climate change

ClimateWire News - Fri, 09/12/2025 - 6:24am
A number of moonshot solutions to cool the planet have gained traction in recent years amid faltering efforts to stem climate change by cutting emissions.

IMF to revamp key unit as US objects to climate, gender stance

ClimateWire News - Fri, 09/12/2025 - 6:23am
The shake-up is due to be completed by the time of the IMF and World Bank’s mid-October meetings.

EU commissioner sees ‘more appealing’ rules luring ESG money

ClimateWire News - Fri, 09/12/2025 - 6:23am
The EU is currently trying to simplify its sustainable finance framework.

This MIT spinout is taking biomolecule storage out of the freezer

MIT Latest News - Fri, 09/12/2025 - 12:00am

Ever since freezers were invented, the life sciences industry has been reliant on them. That’s because many patient samples, drug candidates, and other biologics must be stored and transported in powerful freezers or surrounded by dry ice to remain stable.

The problem was on full display during the Covid-19 pandemic, when truckloads of vaccines had to be discarded because they had thawed during transport. Today, the stakes are even higher. Precision medicine, from CAR-T cell therapies to tumor DNA sequencing that guides cancer treatment, depends on pristine biological samples. Yet a single power outage, shipping delay, or equipment failure can destroy irreplaceable patient samples, setting back treatment by weeks or halting it entirely. In remote areas and developing nations, the lack of reliable cold storage effectively locks out entire populations from these life-saving advances.

Cache DNA wants to set the industry free from freezers. At MIT, the company’s founders created a new way to store and preserve DNA molecules at room temperature. Now the company is building biomolecule preservation technologies that can be used in applications across health care, from routine blood tests and cancer screening to rare disease research and pandemic preparedness.

“We want to challenge the paradigm,” says Cache DNA co-founder and former MIT postdoc James Banal. “Biotech has been reliant on the cold chain for more than 50 years. Why hasn’t that changed? Meanwhile, the cost of DNA sequencing has plummeted from $3 billion for the first human genome to under $200 today. With DNA sequencing and synthesis becoming so cheap and fast, storage and transport have emerged as the critical bottlenecks. It’s like having a supercomputer that still requires punch cards for data input.”

As the company works to preserve biomolecules beyond DNA and scale the production of its kits, co-founders Banal and MIT Professor Mark Bathe believe their technology has the potential to unlock new health insights by making sample storage accessible to scientists around the world.

“Imagine if every human on Earth could contribute to a global biobank, not just those living near million-dollar freezer facilities,” Banal says. “That’s 8 billion biological stories instead of just a privileged few. The cures we’re missing might be hiding in the biomolecules of someone we’ve never been able to reach.”

From quantum computing to “Jurassic Park”

Banal came to MIT from Australia to work as a postdoc under Bathe, a professor in MIT’s Department of Biological Engineering. Banal primarily studied in the MIT-Harvard Center for Excitonics, through which he collaborated with researchers from across MIT.

“I worked on some really wacky stuff, like DNA nanotechnology and its intersection with quantum computing and artificial photosynthesis,” Banal recalls.

Another project focused on using DNA to store data. While computers store data as 0s and 1s, DNA can store the same information using the nucleotides A, T, G, and C, allowing for extremely dense storage of data: By one estimate, 1 gram of DNA can hold up to 215 petabytes of data.

After three years of work, in 2021, Banal and Bathe created a system that stored DNA-based data in tiny glass particles. They founded Cache DNA the same year, securing the intellectual property by working with MIT’s Technology Licensing Office, applying the technology to storing clinical nucleic acid samples as well as DNA data. Still, the technology was too nascent to be used for most commercial applications at the time.

Professor of chemistry Jeremiah Johnson had a different approach. His research had shown that certain plastics and rubbers could be made recyclable by adding cleavable molecular bonds. Johnson thought Cache DNA’s technology could be faster and more reliable using his amber-like polymers, similar to how researchers in the “Jurassic Park” movie recover ancient dinosaur DNA from a tree’s fossilized amber resin.

“It started basically as a fun conversation along the halls of Building 16,” Banal recalls. “He’d seen my work, and I was aware of the innovations in his lab.”

Banal immediately saw the potential. He was familiar with the burden of the cold chain. For his MIT experiments, he’d store samples in big freezers kept at -80 degrees Celsius. Samples would sometimes get lost in the freezer or be buried in the inevitable ice build-up. Even when they were perfectly preserved, samples could degrade as they thawed.

As part of a collaboration between Cache DNA and MIT, Banal, Johnson, and two researchers in Johnson’s lab developed a polymer that stores DNA at room temperature. In a nod to their inspiration, they demonstrated the approach by encoding DNA sequences with the “Jurassic Park” theme song.

The researchers’ polymers could encompass a material as a liquid and then form a solid, glass-like block when heated. To release the DNA, the researchers could add a molecule called cysteamine and a special detergent. The researchers showed the process could work to store and access all 50,000 base pairs of a human genome without causing damage.

“Real amber is not great at preservation. It’s porous and lets in moisture and air,” Banal says. “What we built is completely different: a dense polymer network that forms an impenetrable barrier around DNA. Think of it like vacuum-sealing, but at the molecular level. The polymer is so hydrophobic that water and enzymes that would normally destroy DNA simply can’t get through.”

As that research was taking shape, Cache DNA was learning that sample storage was a huge problem from hospitals and research labs. In places like Florida and Singapore, researchers said contending with the effects of humidity on samples was another constant headache. Other researchers across the globe wanted to know if the technology would help them collect samples outside of the lab.

“Hospitals told us they were running out of space,” Banal says. “They had to throw samples out, limit sample collection, and as a last-case scenario, they would use a decades-old storage technology that leads to degradation after a short period of time. It became a north star for us to solve those problems.”

A new tool for precision health

Last year, Cache DNA sent out more than 100 of its first alpha DNA preservation kits to researchers around the world.

“We didn’t tell researchers what to use it for, and our minds were blown by the use cases,” Banal says. “Some used it for collecting samples in the field where cold shipping wasn't feasible. Others evaluated for long term archival storage. The applications were different, but the problem was universal: They all needed reliable storage without the constraint of refrigeration.”

Cache DNA has developed an entire suite of preservation technologies that can be optimized for different storage scenarios. The company also recently received a grant from the National Science Foundation to expand its technology to preserve a broader swath of biomolecules, including RNA and proteins, which could yield new insights into health and disease.

“This important innovation helps eliminate the cold chain and has the potential to unlock millions of genetic samples globally for Cache DNA to empower personalized medicine,” Bathe says. “Eliminating the cold chain is half the equation. The other half is scaling from thousands to millions or even billions of nucleic acid samples. Together, this could enable the equivalent of a ‘Google Books’ for nucleic acids stored at room temperature, either for clinical samples in hospital settings and remote regions of the world, or alternatively to facilitate DNA data storage and retrieval at scale.”

“Freezers have dictated where science could happen,” Banal says. “Remove that constraint, and you start to crack open possibilities: island nations studying their unique genetics without samples dying in transit; every rare disease patient worldwide contributing to research, not just those near major hospitals; the 2 billion people without reliable electricity finally joining global health studies. Room-temperature storage isn’t the whole answer, but every cure starts with a sample that survived the journey.”

New RNA tool to advance cancer and infectious disease research and treatment

MIT Latest News - Thu, 09/11/2025 - 4:45pm

Researchers at the Antimicrobial Resistance (AMR) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, have developed a powerful tool capable of scanning thousands of biological samples to detect transfer ribonucleic acid (tRNA) modifications — tiny chemical changes to RNA molecules that help control how cells grow, adapt to stress, and respond to diseases such as cancer and antibiotic‑resistant infections. This tool opens up new possibilities for science, health care, and industry — from accelerating disease research and enabling more precise diagnostics to guiding the development of more effective medical treatments for diseases such as cancer and antibiotic-resistant infections.

For this study, the SMART AMR team worked in collaboration with researchers at MIT, Nanyang Technological University in Singapore, the University of Florida, the University at Albany in New York, and Lodz University of Technology in Poland.

Addressing current limitations in RNA modification profiling

Cancer and infectious diseases are complicated health conditions in which cells are forced to function abnormally by mutations in their genetic material or by instructions from an invading microorganism. The SMART-led research team is among the world’s leaders in understanding how the epitranscriptome — the over 170 different chemical modifications of all forms of RNA — controls growth of normal cells and how cells respond to stressful changes in the environment, such as loss of nutrients or exposure to toxic chemicals. The researchers are also studying how this system is corrupted in cancer or exploited by viruses, bacteria, and parasites in infectious diseases.

Current molecular methods used to study the expansive epitranscriptome and all of the thousands of different types of modified RNA are often slow, labor-intensive, costly, and involve hazardous chemicals, which limits research capacity and speed.

To solve this problem, the SMART team developed a new tool that enables fast, automated profiling of tRNA modifications — molecular changes that regulate how cells survive, adapt to stress, and respond to disease. This capability allows scientists to map cell regulatory networks, discover novel enzymes, and link molecular patterns to disease mechanisms, paving the way for better drug discovery and development, and more accurate disease diagnostics. 

Unlocking the complexity of RNA modifications

SMART’s open-access research, recently published in Nucleic Acids Research and titled “tRNA modification profiling reveals epitranscriptome regulatory networks in Pseudomonas aeruginosa,” shows that the tool has already enabled the discovery of previously unknown RNA-modifying enzymes and the mapping of complex gene regulatory networks. These networks are crucial for cellular adaptation to stress and disease, providing important insights into how RNA modifications control bacterial survival mechanisms. 

Using robotic liquid handlers, researchers extracted tRNA from more than 5,700 genetically modified strains of Pseudomonas aeruginosa, a bacterium that causes infections such as pneumonia, urinary tract infections, bloodstream infections, and wound infections. Samples were enzymatically digested and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), a technique that separates molecules based on their physical properties and identifies them with high precision and sensitivity. 

As part of the study, the process generated over 200,000 data points in a high-resolution approach that revealed new tRNA-modifying enzymes and simplified gene networks controlling how cells respond and adapt to stress. For example, the data revealed that the methylthiotransferase MiaB, one of the enzymes responsible for tRNA modification ms2i6A, was found to be sensitive to the availability of iron and sulfur and to metabolic changes when oxygen is low. Discoveries like this highlight how cells respond to environmental stresses, and could lead to future development of therapies or diagnostics.

SMART’s automated system was specially designed to profile tRNA modifications across thousands of samples rapidly and safely. Unlike traditional methods, this tool integrates robotics to automate sample preparation and analysis, eliminating the need for hazardous chemical handling and reducing costs. This advancement increases safety, throughput, and affordability, enabling routine large-scale use in research and clinical labs.

A faster and automated way to study RNA

As the first system capable of quantitative, system‑wide profiling of tRNA modifications at this scale, the tool provides a unique and comprehensive view of the epitranscriptome — the complete set of RNA chemical modifications within cells. This capability allows researchers to validate hypotheses about RNA modifications, uncover novel biology, and identify promising molecular targets for developing new therapies.

“This pioneering tool marks a transformative advance in decoding the complex language of RNA modifications that regulate cellular responses,” says Professor Peter Dedon, co-lead principal investigator at SMART AMR, professor of biological engineering at MIT, and corresponding author of the paper. “Leveraging AMR’s expertise in mass spectrometry and RNA epitranscriptomics, our research uncovers new methods to detect complex gene networks critical for understanding and treating cancer, as well as antibiotic-resistant infections. By enabling rapid, large-scale analysis, the tool accelerates both fundamental scientific discovery and the development of targeted diagnostics and therapies that will address urgent global health challenges.”

Accelerating research, industry, and health-care applications

This versatile tool has broad applications across scientific research, industry, and health care. It enables large-scale studies of gene regulation, RNA biology, and cellular responses to environmental and therapeutic challenges. The pharmaceutical and biotech industry can harness it for drug discovery and biomarker screening, efficiently evaluating how potential drugs affect RNA modifications and cellular behavior. This aids the development of targeted therapies and personalized medical treatments.

“This is the first tool that can rapidly and quantitatively profile RNA modifications across thousands of samples,” says Jingjing Sun, research scientist at SMART AMR and first author of the paper. “It has not only allowed us to discover new RNA-modifying enzymes and gene networks, but also opens the door to identifying biomarkers and therapeutic targets for diseases such as cancer and antibiotic-resistant infections. For the first time, large-scale epitranscriptomic analysis is practical and accessible.”

Looking ahead: advancing clinical and pharmaceutical applications

Moving forward, SMART AMR plans to expand the tool’s capabilities to analyze RNA modifications in human cells and tissues, moving beyond microbial models to deepen understanding of disease mechanisms in humans. Future efforts will focus on integrating the platform into clinical research to accelerate the discovery of biomarkers and therapeutic targets. The translation of the technology into an epitranscriptome-wide analysis tool that can be used in pharmaceutical and health-care settings will drive the development of more effective and personalized treatments.

The research conducted at SMART is supported by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise program.

Burgum: Losing AI race is more dangerous than climate change

ClimateWire News - Thu, 09/11/2025 - 6:15am
The Interior secretary indicated that 1 degree of climate change was an acceptable consequence of ramping up fossil fuels for data centers.

Deal or no deal? Lamont pushes for agreement on Revolution Wind.

ClimateWire News - Thu, 09/11/2025 - 6:14am
Connecticut Gov. Ned Lamont said he's "happy to open up the conversation to other sources of energy, including natural gas."

Trump says offshore wind hurts whales. What about oil drilling?

ClimateWire News - Thu, 09/11/2025 - 6:13am
The administration cites whale protection in its anti-wind agenda. But that concern vanishes for fossil fuel projects in whale habitat.

Disbanded DOE climate group vows to continue work

ClimateWire News - Thu, 09/11/2025 - 6:13am
Facing legal challenges, the department dissolved the group whose members wrote a report critical of mainstream climate science.

Doctors point to health risks of EPA endangerment rollback

ClimateWire News - Thu, 09/11/2025 - 6:12am
The warnings came as the agency works to revoke the 2009 scientific finding that climate change threatens people.

Sacramento’s most powerful puppet master is causing climate chaos

ClimateWire News - Thu, 09/11/2025 - 6:11am
Kip Lipper is at the center of state lawmakers’ gridlock on energy bills.

EU wants to mine the moon for clean energy resources

ClimateWire News - Thu, 09/11/2025 - 6:11am
Geopolitical instability is forcing Europe to look to the heavens for its energy security.

Cyprus will host firefighting hub as climate change worsens blazes

ClimateWire News - Thu, 09/11/2025 - 6:10am
Officials proposed setting up the hub as early as 2022, with firefighting aircraft that could quickly respond to wildfires in the Middle East.

Climate tracking apps measure your carbon footprint. Here’s how they work.

ClimateWire News - Thu, 09/11/2025 - 6:09am
Several apps help people figure out which actions create the most emissions and how to avoid them. An AP reporter tried three of them.

Technology originating at MIT leads to approved bladder cancer treatment

MIT Latest News - Thu, 09/11/2025 - 12:00am

At MIT, a few scribbles on a whiteboard can turn into a potentially transformational cancer treatment.

This scenario came to fruition this week when the U.S. Food and Drug Administration approved a system for treating an aggressive form of bladder cancer. More than a decade ago, the system started as an idea in the lab of MIT Professor Michael Cima at the Koch Institute for Integrative Cancer Research, enabled by funding from the National Institutes of Health and MIT’s Deshpande Center.

The work that started with a few researchers at MIT turned into a startup, TARIS Biomedical LLC, that was co-founded by Cima and David H. Koch Institute Professor Robert Langer, and acquired by Johnson & Johnson in 2019. In developing the core concept of a device for local drug delivery to the bladder — which represents a new paradigm in bladder cancer treatment — the MIT team approached drug delivery like an engineering problem.

“We spoke to urologists and sketched out the problems with past treatments to get to a set of design parameters,” says Cima, a David H. Koch Professor of Engineering and professor of materials science and engineering. “Part of our criteria was it had to fit into urologists’ existing procedures. We wanted urologists to know what to do with the system without even reading the instructions for use. That’s pretty much how it came out.”

To date, the system has been used in patients thousands of times. In one study involving people with high-risk, non-muscle-invasive bladder cancer whose disease had proven resistant to standard care, doctors could find no evidence of cancer in 82.4 percent of patients treated with the system. More than 50 percent of those patients were still cancer-free nine months after treatment.

The results are extremely gratifying for the team of researchers that worked on it at MIT, including Langer and Heejin Lee SM ’04, PhD ’09, who developed the system as part of his PhD thesis. And Cima says far more people deserve credit than just the ones who scribbled on his whiteboard all those years ago.

“Drug products like this take an enormous amount of effort,” says Cima. “There are probably more than 1,000 people that have been involved in developing and commercializing the system: the MIT inventors, the urologists they consulted, the scientists at TARIS, the scientists at Johnson & Johnson — and that’s not including all the patients who participated in clinical trials. I also want to emphasize the importance of the MIT ecosystem, and the importance of giving people the resources to pursue arguably crazy ideas. We need to continue to support those kinds of activities.”

In the mid 2000s, Langer connected Cima with a urologist at Boston Children’s Hospital who was seeking a new treatment for a painful bladder disease known as interstitial cystitis. The standard treatment required frequent drug infusions into a patient’s bladder through a catheter, which provided only temporary relief.

A group of researchers including Cima; Lee; Hong Linh Ho Duc SM ’05, PhD ’09; Grace Kim PhD ’08; and Karen Daniel PhD ’09 began speaking with urologists and people who had run failed clinical trials involving bladder treatments to understand what went wrong. All that information went on Cima’s whiteboard over the course of several weeks. Fortunately, Cima also scribbled “Do not erase!”

“We learned a lot in the process of writing everything down,” Cima says. “We learned what not to build and what to avoid.”

With the problem well-defined, Cima received a grant from MIT’s Deshpande Center for Technological Innovation, which allowed Lee to work on designing a better solution as part of his PhD thesis.

One of the key advances the group made was using a special alloy that gave the device “shape memory” so that it could be straightened out and inserted into the bladder through a catheter. Then it would fold up, preventing it from being expelled during urination.

The new design was able to slowly release drugs over a two-week period — far longer than any other approach — and could then be removed using a thin, flexible tube commonly used in urology, called a cystoscope. The progress was enough for Cima and Langer, who are both serial entrepreneurs, to found TARIS Biomedical and license the technology from MIT. Lee and three other MIT graduates joined the company.

“It was a real pleasure working with Mike Cima, our students, and colleagues on this novel drug delivery system, which is already changing patients’ lives,” Langer says, “It’s a great example of how research at the Koch Institute starts with basic science and engineering and ends up with new treatments for cancer patients.”

The FDA’s approval of the system for the treatment of certain patients with high-risk, non-muscle-invasive bladder cancer now means that patients with this disease may have a better treatment option. Moving forward, Cima hopes the system continues to be explored to treat other diseases.

A better understanding of debilitating head pain

MIT Latest News - Thu, 09/11/2025 - 12:00am

Everyone gets headaches. But not everyone gets cluster headache attacks, a debilitating malady producing acute pain that lasts an hour or two. Cluster headache attacks come in sets — hence the name — and leave people in complete agony, unable to function. A little under 1 percent of the U.S. population suffers from cluster headache.

But that’s just an outline of the matter. What’s it like to actually have a cluster headache?

“The pain of a cluster headache is such that you can’t sit still,” says MIT-based science journalist Tom Zeller, who has suffered from them for decades. “I’d liken it to putting your hand on a hot burner, except that you can’t take your hand off for an hour or two. Every headache is an emergency. You have to run or pace or rock. Think of another pain you had to dance through, but it just doesn’t stop. It’s that level of intensity, and it’s all happening inside your head.”

And then there is the pain of the migraine headache, which seems slightly less acute than a cluster attack, but longer-lasting, and similarly debilitating. Migraine attacks can be accompanied by extreme sensitivity to light and noise, vision issues, and nausea, among other neurological symptoms, leaving patients alone in dark rooms for hours or days. An estimated 1.2 billion people around the world, including 40 million in the U.S., struggle with migraine attacks.

These are not obscure problems. And yet: We don’t know exactly why migraine and cluster headache disorders occur, nor how to address them. Headaches have never been a prominent topic within modern medical research. How can something so pervasive be so overlooked?

Now Zeller examines these issues in an absorbing book, “The Headache: The Science of a Most Confounding Affliction — and a Search for Relief,” published this summer by Mariner Books. Zeller is the editor-in-chief and co-founder of Undark, a digital magazine on science and society published by the Knight Science Journalism Program at MIT.

One word, but different syndromes

“The Headache,” which is Zeller’s first book, combines a first-person narrative of his own suffering, accounts of the pain and dread that other headache sufferers feel, and thorough reporting on headache-based research in science and medicine. Zeller has experienced cluster headache attacks for 30-plus years, dating to when he was in his 20s.

“In some ways, I suppose I had been writing the book my whole adult life without knowing it,” Zeller says. Indeed, he had collected research material about these conditions for years while grappling with his own headache issues.

A key issue in the book is why society has not taken cluster headache and migraine problems more seriously — and relatedly, why the science of headache disorders is not more advanced. Although in fairness, as Zeller says, “Anything involving the brain or central nervous system is incredibly hard to study.”

More broadly, Zeller suggests in the book, we have conflated regular workaday headaches — the kind you may get from staring at a screen too long — with the far more severe and rather different disorders like cluster headache and migraine. (Some patients refer to cluster headache and migraine in the singular, not plural, to emphasize that this is an ongoing condition, not just successive headaches.)

“Headaches are annoying, and we tough it out,” Zeller says. “But we use the same exact word to talk about these other things,” namely, cluster headache and migraine. This has likely reinforced our general dismissal of severe headache disorders as a pressing and distinct medical problem. Instead, we often consider headache disorders, even severe ones, as something people should simply power through.

“There’s a certain sense of malingering we still attach to a migraine or [other] headache disorder, and I’m not sure that’s going away,” Zeller says.

Then too, about three-quarters of people who experience migraine attacks are women, which has quite plausibly led the ailment to “get short shrift historically,” as Zeller says. Or at least, in recent history: As Zeller chronicles in the book, an awareness of severe headache disorders goes back to ancient times, and it’s possible they have received less relative attention in modernity.

A new shift in medical thinking

In any case, for much of the 20th century, conventional medical wisdom held that migraine and cluster headache stemmed from changes or abnormalities in blood vessels. But in recent decades, as Zeller details, there has been a paradigm shift: These conditions are now seen as more neurological in origin.

A key breakthrough here was the 1980s discovery of a neurotransmitter called calcitonin gene-related peptide, or CGRP. As scientists have discovered, CGRP is released from nerve endings around blood vessels and helps produce migraine symptoms. This offered a new strategy — and target — for combating severe head pain. The first drugs to inhibit the effects of CGRP hit the market in 2018, and most researchers in the field are now focused on idiopathic headache as a neurological disorder, not a vascular problem.

“It’s the way science works,” Zeller says. “Changing course is not easy. It’s like turning a ship on a dime. The same applies to the study of headaches.”

Many medications aimed at blocking these neurotransmitters have since been developed, though only about 20 percent of patients seem to find permanent relief as a result. As Zeller chronicles, other patients feel benefits for about a year, before the effects of a medication wear off; many of them now try complicated combinations of medications.

Severe headache disorders also seem linked to hormonal changes in people, who often see an onset of these ailments in their teens, and a diminishing of symptoms later in life. So, while headache medicine has witnessed a recent breakthrough, much more work lies ahead.

Opening up a discussion

Amid all this, one set of questions still tugging at Zeller is evolutionary in nature: Why do humans experience headache disorders at all? There is no clear evidence that other species get severe headaches — or that the prevalence of severe headache conditions in society has ever diminished.

One hypothesis, Zeller notes, is that “having a highly attuned nervous system could have been a benefit in our more primitive state.” Such a system may have helped us survive, in the past, but at the cost of producing intense disorders in some people when the wiring goes a bit awry. We may learn more about this as neuro-based headache research continues.

“The Headache” has received widespread praise. Writing in The New Yorker, Jerome Groopman heralded the “rich material in the book,” noting that it “weaves together history, biology, a survey of current research, testimony from patients, and an agonizing account of Zeller’s own suffering.”

For his part, Zeller says he is appreciative of the attention “The Headache” has generated, as one of the most widely-noted nonfiction books released this summer.

“It’s opened up room for a kind of conversation that doesn’t usually break through into the mainstream,” Zeller says. “I’m hearing from a lot of patients who just are saying, ‘Thank you for writing this.’ And that’s really gratifying. I’m most happy to hear from people who think it’s giving them a voice. I’m also hearing a lot from doctors and scientists. The moment has opened up for this discussion, and I’m grateful for that.”

Pages