Feed aggregator

Extreme weather events have strong but different impacts on plant and insect phenology

Nature Climate Change - Fri, 02/21/2025 - 12:00am

Nature Climate Change, Published online: 21 February 2025; doi:10.1038/s41558-025-02248-7

Using community data of 581 angiosperm and 172 Lepidoptera species, the authors consider the impacts of extreme weather events (EWE) on the timing of life events (phenology). They show high responsiveness of phenology to EWEs and highlight the potential for EWEs to drive phenological mismatches.

3 Questions: Exploring the limits of carbon sequestration

MIT Latest News - Thu, 02/20/2025 - 3:35pm

As part of a multi-pronged approach toward curbing the effects of greenhouse gas emissions, scientists seek to better understand the impact of rising carbon dioxide (CO2) levels on terrestrial ecosystems, particularly tropical forests. To that end, climate scientist César Terrer, the Class of 1958 Career Development Assistant Professor of Civil and Environmental Engineering (CEE) at MIT, and colleague Josh Fisher of Chapman University are bringing their scientific minds to bear on a unique setting — an active volcano in Costa Rica — as a way to study carbon dioxide emissions and their influence. 

Elevated CO2 levels can lead to a phenomenon known as the CO2 fertilization effect, where plants grow more and absorb greater amounts of carbon, providing a cooling effect. While this effect has the potential to be a natural climate change mitigator, the extent of how much carbon plants can continue to absorb remains uncertain. There are growing concerns from scientists that plants may eventually reach a saturation point, losing their ability to offset increasing atmospheric CO2. Understanding these dynamics is crucial for accurate climate predictions and developing strategies to manage carbon sequestration. Here, Terrer discusses his innovative approach, his motivations for joining the project, and the importance of advancing this research.

Q: Why did you get involved in this line of research, and what makes it unique?

A: Josh Fisher, a climate scientist and long-time collaborator, had the brilliant idea to take advantage of naturally high CO2 levels near active volcanoes to study the fertilization effect in real-world conditions. Conducting such research in dense tropical forests like the Amazon — where the largest uncertainties about CO2 fertilization exist — is challenging. It would require large-scale CO2 tanks and extensive infrastructure to evenly distribute the gas throughout the towering trees and intricate canopy layers — a task that is not only logistically complex, but also highly costly. Our approach allows us to circumvent those obstacles and gather critical data in a way that hasn't been done before.

Josh was looking for an expert in the field of carbon ecology to co-lead and advance this research with him. My expertise of understanding the dynamics that regulate carbon storage in terrestrial ecosystems within the context of climate change made for a natural fit to co-lead and advance this research with him. This field has been central to my research, and was the focus of my PhD thesis.

Our experiments inside the Rincon de la Vieja National Park are particularly exciting because CO2 concentrations in the areas near the volcano are four times higher than the global average. This gives us a rare opportunity to observe how elevated CO2 affects plant biomass in a natural setting — something that has never been attempted at this scale.

Q: How are you measuring CO2 concentrations at the volcano?

A: We have installed a network of 50 sensors in the forest canopy surrounding the volcano. These sensors continuously monitor CO2 levels, allowing us to compare areas with naturally high CO2 emissions from the volcano to control areas with typical atmospheric CO2 concentrations. The sensors are Bluetooth-enabled, requiring us to be in close proximity to retrieve the data. They will remain in place for a full year, capturing a continuous dataset on CO2 fluctuations. Our next data collection trip is scheduled for March, with another planned a year after the initial deployment.

Q: What are the long-term goals of this research?

A: Our primary objective is to determine whether the CO2 fertilization effect can be sustained, or if plants will eventually reach a saturation point, limiting their ability to absorb additional carbon. Understanding this threshold is crucial for improving climate models and carbon mitigation strategies.

To expand the scope of our measurements, we are exploring the use of airborne technologies — such as drones or airplane-mounted sensors — to assess carbon storage across larger areas. This would provide a more comprehensive view of carbon sequestration potential in tropical ecosystems. Ultimately, this research could offer critical insights into the future role of forests in mitigating climate change, helping scientists and policymakers develop more accurate carbon budgets and climate projections. If successful, our approach could pave the way for similar studies in other ecosystems, deepening our understanding of how nature responds to rising CO2 levels.

AI system predicts protein fragments that can bind to or inhibit a target

MIT Latest News - Thu, 02/20/2025 - 2:35pm

All biological function is dependent on how different proteins interact with each other. Protein-protein interactions facilitate everything from transcribing DNA and controlling cell division to higher-level functions in complex organisms.

Much remains unclear, however, about how these functions are orchestrated on the molecular level, and how proteins interact with each other — either with other proteins or with copies of themselves.

Recent findings have revealed that small protein fragments have a lot of functional potential. Even though they are incomplete pieces, short stretches of amino acids can still bind to interfaces of a target protein, recapitulating native interactions. Through this process, they can alter that protein’s function or disrupt its interactions with other proteins.

Protein fragments could therefore empower both basic research on protein interactions and cellular processes, and could potentially have therapeutic applications.

Recently published in Proceedings of the National Academy of Sciences, a new method developed in the Department of Biology builds on existing artificial intelligence models to computationally predict protein fragments that can bind to and inhibit full-length proteins in E. coli. Theoretically, this tool could lead to genetically encodable inhibitors against any protein.

The work was done in the lab of associate professor of biology and Howard Hughes Medical Institute investigator Gene-Wei Li in collaboration with the lab of Jay A. Stein (1968) Professor of Biology, professor of biological engineering, and department head Amy Keating.

Leveraging machine learning

The program, called FragFold, leverages AlphaFold, an AI model that has led to phenomenal advancements in biology in recent years due to its ability to predict protein folding and protein interactions.

The goal of the project was to predict fragment inhibitors, which is a novel application of AlphaFold. The researchers on this project confirmed experimentally that more than half of FragFold’s predictions for binding or inhibition were accurate, even when researchers had no previous structural data on the mechanisms of those interactions.

“Our results suggest that this is a generalizable approach to find binding modes that are likely to inhibit protein function, including for novel protein targets, and you can use these predictions as a starting point for further experiments,” says co-first and corresponding author Andrew Savinov, a postdoc in the Li Lab. “We can really apply this to proteins without known functions, without known interactions, without even known structures, and we can put some credence in these models we’re developing.”

One example is FtsZ, a protein that is key for cell division. It is well-studied but contains a region that is intrinsically disordered and, therefore, especially challenging to study. Disordered proteins are dynamic, and their functional interactions are very likely fleeting — occurring so briefly that current structural biology tools can’t capture a single structure or interaction.

The researchers leveraged FragFold to explore the activity of fragments of FtsZ, including fragments of the intrinsically disordered region, to identify several new binding interactions with various proteins. This leap in understanding confirms and expands upon previous experiments measuring FtsZ’s biological activity.

This progress is significant in part because it was made without solving the disordered region’s structure, and because it exhibits the potential power of FragFold.

“This is one example of how AlphaFold is fundamentally changing how we can study molecular and cell biology,” Keating says. “Creative applications of AI methods, such as our work on FragFold, open up unexpected capabilities and new research directions.”

Inhibition, and beyond

The researchers accomplished these predictions by computationally fragmenting each protein and then modeling how those fragments would bind to interaction partners they thought were relevant.

They compared the maps of predicted binding across the entire sequence to the effects of those same fragments in living cells, determined using high-throughput experimental measurements in which millions of cells each produce one type of protein fragment.

AlphaFold uses co-evolutionary information to predict folding, and typically evaluates the evolutionary history of proteins using something called multiple sequence alignments for every single prediction run. The MSAs are critical, but are a bottleneck for large-scale predictions — they can take a prohibitive amount of time and computational power.

For FragFold, the researchers instead pre-calculated the MSA for a full-length protein once, and used that result to guide the predictions for each fragment of that full-length protein.

Savinov, together with Keating Lab alumnus Sebastian Swanson PhD ’23, predicted inhibitory fragments of a diverse set of proteins in addition to FtsZ. Among the interactions they explored was a complex between lipopolysaccharide transport proteins LptF and LptG. A protein fragment of LptG inhibited this interaction, presumably disrupting the delivery of lipopolysaccharide, which is a crucial component of the E. coli outer cell membrane essential for cellular fitness.

“The big surprise was that we can predict binding with such high accuracy and, in fact, often predict binding that corresponds to inhibition,” Savinov says. “For every protein we’ve looked at, we’ve been able to find inhibitors.”

The researchers initially focused on protein fragments as inhibitors because whether a fragment could block an essential function in cells is a relatively simple outcome to measure systematically. Looking forward, Savinov is also interested in exploring fragment function outside inhibition, such as fragments that can stabilize the protein they bind to, enhance or alter its function, or trigger protein degradation.

Design, in principle

This research is a starting point for developing a systemic understanding of cellular design principles, and what elements deep-learning models may be drawing on to make accurate predictions.

“There’s a broader, further-reaching goal that we’re building towards,” Savinov says. “Now that we can predict them, can we use the data we have from predictions and experiments to pull out the salient features to figure out what AlphaFold has actually learned about what makes a good inhibitor?”

Savinov and collaborators also delved further into how protein fragments bind, exploring other protein interactions and mutating specific residues to see how those interactions change how the fragment interacts with its target.

Experimentally examining the behavior of thousands of mutated fragments within cells, an approach known as deep mutational scanning, revealed key amino acids that are responsible for inhibition. In some cases, the mutated fragments were even more potent inhibitors than their natural, full-length sequences.

“Unlike previous methods, we are not limited to identifying fragments in experimental structural data,” says Swanson. “The core strength of this work is the interplay between high-throughput experimental inhibition data and the predicted structural models: the experimental data guides us towards the fragments that are particularly interesting, while the structural models predicted by FragFold provide a specific, testable hypothesis for how the fragments function on a molecular level.”

Savinov is excited about the future of this approach and its myriad applications.

“By creating compact, genetically encodable binders, FragFold opens a wide range of possibilities to manipulate protein function,” Li agrees. “We can imagine delivering functionalized fragments that can modify native proteins, change their subcellular localization, and even reprogram them to create new tools for studying cell biology and treating diseases.” 

MIT faculty, alumni named 2025 Sloan Research Fellows

MIT Latest News - Thu, 02/20/2025 - 1:40pm

Seven MIT faculty and 21 additional MIT alumni are among 126 early-career researchers honored with 2025 Sloan Research Fellowships by the Alfred P. Sloan Foundation.

The recipients represent the MIT departments of Biology; Chemistry; Civil and Environmental Engineering; Earth, Atmospheric and Planetary Sciences; Economics; Electrical Engineering and Computer Science; Mathematics; and Physics as well as the Music and Theater Arts Section and the MIT Sloan School of Management.

The fellowships honor exceptional researchers at U.S. and Canadian educational institutions, whose creativity, innovation, and research accomplishments make them stand out as the next generation of leaders. Winners receive a two-year, $75,000 fellowship that can be used flexibly to advance the fellow’s research.

“The Sloan Research Fellows represent the very best of early-career science, embodying the creativity, ambition, and rigor that drive discovery forward,” says Adam F. Falk, president of the Alfred P. Sloan Foundation. “These extraordinary scholars are already making significant contributions, and we are confident they will shape the future of their fields in remarkable ways.”

Including this year’s recipients, a total of 333 MIT faculty have received Sloan Research Fellowships since the program’s inception in 1955. MIT and Northwestern University are tied for having the most faculty in the 2025 cohort of fellows, each with seven. The MIT recipients are: 

Ariel L. Furst is the Paul M. Cook Career Development Professor of Chemical Engineering at MIT. Her lab combines biological, chemical, and materials engineering to solve challenges in human health and environmental sustainability, with lab members developing technologies for implementation in low-resource settings to ensure equitable access to technology. Furst completed her PhD in the lab of Professor Jacqueline K. Barton at Caltech developing new cancer diagnostic strategies based on DNA charge transport. She was then an A.O. Beckman Postdoctoral Fellow in the lab of Professor Matthew Francis at the University of California at Berkeley, developing sensors to monitor environmental pollutants. She is the recipient of the NIH New Innovator Award, the NSF CAREER Award, and the Dreyfus Teacher-Scholar Award. She is passionate about STEM outreach and increasing participation of underrepresented groups in engineering.

Mohsen Ghaffari SM ’13, PhD ’17 is an associate professor in the Department of Electrical Engineering and Computer Science (EECS) as well as the Computer Science and Artificial Intelligence Laboratory (CSAIL). His research explores the theory of distributed and parallel computation, and he has had influential work on a range of algorithmic problems, including generic derandomization methods for distributed computing and parallel computing (which resolved several decades-old open problems), improved distributed algorithms for graph problems, sublinear algorithms derived via distributed techniques, and algorithmic and impossibility results for massively parallel computation. His work has been recognized with best paper awards at the IEEE Symposium on Foundations of Computer Science (FOCS), ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), the ACM Symposium on Principles of Distributed Computing (PODC), and the International Symposium on Distributed Computing (DISC), the European Research Council's Starting Grant, and a Google Faculty Research Award, among others.

Marzyeh Ghassemi PhD ’17 is an associate professor within EECS and the Institute for Medical Engineering and Science (IMES). Ghassemi earned two bachelor’s degrees in computer science and electrical engineering from New Mexico State University as a Goldwater Scholar; her MS in biomedical engineering from Oxford University as a Marshall Scholar; and her PhD in computer science from MIT. Following stints as a visiting researcher with Alphabet’s Verily and an assistant professor at University of Toronto, Ghassemi joined EECS and IMES as an assistant professor in July 2021. (IMES is the home of the Harvard-MIT Program in Health Sciences and Technology.) She is affiliated with the Laboratory for Information and Decision Systems (LIDS), the MIT-IBM Watson AI Lab, the Abdul Latif Jameel Clinic for Machine Learning in Health, the Institute for Data, Systems, and Society (IDSS), and CSAIL. Ghassemi’s research in the Healthy ML Group creates a rigorous quantitative framework in which to design, develop, and place machine learning models in a way that is robust and useful, focusing on health settings. Her contributions range from socially-aware model construction to improving subgroup- and shift-robust learning methods to identifying important insights in model deployment scenarios that have implications in policy, health practice, and equity. Among other awards, Ghassemi has been named one of MIT Technology Review’s 35 Innovators Under 35 and an AI2050 Fellow, as well as receiving the 2018 Seth J. Teller Award, the 2023 MIT Prize for Open Data, a 2024 NSF CAREER Award, and the Google Research Scholar Award. She founded the nonprofit Association for Health, Inference and Learning (AHLI) and her work has been featured in popular press such as Forbes, Fortune, MIT News, and The Huffington Post.

Darcy McRose is the Thomas D. and Virginia W. Cabot Career Development Assistant Professor of Civil and Environmental Engineering. She is an environmental microbiologist who draws on techniques from genetics, chemistry, and geosciences to understand the ways microbes control nutrient cycling and plant health. Her laboratory uses small molecules, or “secondary metabolites,” made by plants and microbes as tractable experiments tools to study microbial activity in complex environments like soils and sediments. In the long term, this work aims to uncover fundamental controls on microbial physiology and community assembly that can be used to promote agricultural sustainability, ecosystem health, and human prosperity.

Sarah Millholland, an assistant professor of physics at MIT and member of the Kavli Institute for Astrophysics and Space Research, is a theoretical astrophysicist who studies extrasolar planets, including their formation and evolution, orbital dynamics, and interiors/atmospheres. She studies patterns in the observed planetary orbital architectures, referring to properties like the spacings, eccentricities, inclinations, axial tilts, and planetary size relationships. She specializes in investigating how gravitational interactions such as tides, resonances, and spin dynamics sculpt observable exoplanet properties. She is the 2024 recipient of the Vera Rubin Early Career Award for her contributions to the formation and dynamics of extrasolar planetary systems. She plans to use her Sloan Fellowship to explore how tidal physics shape the diversity of orbits and interiors of exoplanets orbiting close to their stars.

Emil Verner is the Albert F. (1942) and Jeanne P. Clear Career Development Associate Professor of Global Management and an associate professor of finance at the MIT Sloan School of Management. His research lies at the intersection of finance and macroeconomics, with a particular focus on understanding the causes and consequences of financial crises over the past 150 years. Verner’s recent work examines the drivers of bank runs and insolvency during banking crises, the role of debt booms in amplifying macroeconomic fluctuations, the effectiveness of debt relief policies during crises, and how financial crises impact political polarization and support for populist parties. Before joining MIT, he earned a PhD in economics from Princeton University.

Christian Wolf, the Rudi Dornbusch Career Development Assistant Professor of Economics and a faculty research fellow at the National Bureau of Economic Research, works in macroeconomics, monetary economics, and time series econometrics. His work focuses on the development and application of new empirical methods to address classic macroeconomic questions and to evaluate how robust the answers are to a range of common modeling assumptions. His research has provided path-breaking insights on monetary transmission mechanisms and fiscal policy. In a separate strand of work, Wolf has substantially deepened our understanding of the appropriate methods macroeconomists should use to estimate impulse response functions — how key economic variables respond to policy changes or unexpected shocks.

The following MIT alumni also received fellowships: 

Jason Altschuler SM ’18, PhD ’22
David Bau III PhD ’21 
Rene Boiteau PhD ’16 
Lynne Chantranupong PhD ’17
Lydia B. Chilton ’06, ’07, MNG ’09 
Jordan Cotler ’15 
Alexander Ji PhD ’17 
Sarah B. King ’10
Allison Z. Koenecke ’14 
Eric Larson PhD ’18
Chen Lian ’15, PhD ’20
Huanqian Loh ’06 
Ian J. Moult PhD ’16
Lisa Olshansky PhD ’15
Andrew Owens SM ’13, PhD ’16 
Matthew Rognlie PhD ’16
David Rolnick ’12, PhD ’18 
Shreya Saxena PhD ’17
Mark Sellke ’18
Amy X. Zhang PhD ’19 
Aleksandr V. Zhukhovitskiy PhD ’16

Professor Anthony Sinskey, biologist, inventor, entrepreneur, and Center for Biomedical Innovation co-founder, dies at 84

MIT Latest News - Thu, 02/20/2025 - 1:00pm

Longtime MIT Professor Anthony “Tony” Sinskey ScD ’67, who was also the co-founder and faculty director of the Center for Biomedical Innovation (CBI), passed away on Feb. 12 at his home in New Hampshire. He was 84.

Deeply engaged with MIT, Sinskey left his mark on the Institute as much through the relationships he built as the research he conducted. Colleagues say that throughout his decades on the faculty, Sinskey’s door was always open.

“He was incredibly generous in so many ways,” says Graham Walker, an American Cancer Society Professor at MIT. “He was so willing to support people, and he did it out of sheer love and commitment. If you could just watch Tony in action, there was so much that was charming about the way he lived. I’ve said for years that after they made Tony, they broke the mold. He was truly one of a kind.”

Sinskey’s lab at MIT explored methods for metabolic engineering and the production of biomolecules. Over the course of his research career, he published more than 350 papers in leading peer-reviewed journals for biology, metabolic engineering, and biopolymer engineering, and filed more than 50 patents. Well-known in the biopharmaceutical industry, Sinskey contributed to the founding of multiple companies, including Metabolix, Tepha, Merrimack Pharmaceuticals, and Genzyme Corporation. Sinskey’s work with CBI also led to impactful research papers, manufacturing initiatives, and educational content since its founding in 2005.

Across all of his work, Sinskey built a reputation as a supportive, collaborative, and highly entertaining friend who seemed to have a story for everything.

“Tony would always ask for my opinions — what did I think?” says Barbara Imperiali, MIT’s Class of 1922 Professor of Biology and Chemistry, who first met Sinskey as a graduate student. “Even though I was younger, he viewed me as an equal. It was exciting to be able to share my academic journey with him. Even later, he was continually opening doors for me, mentoring, connecting. He felt it was his job to get people into a room together to make new connections.”

Sinskey grew up in the small town of Collinsville, Illinois, and spent nights after school working on a farm. For his undergraduate degree, he attended the University of Illinois, where he got a job washing dishes at the dining hall. One day, as he recalled in a 2020 conversation, he complained to his advisor about the dishwashing job, so the advisor offered him a job washing equipment in his microbiology lab.

In a development that would repeat itself throughout Sinskey’s career, he befriended the researchers in the lab and started learning about their work. Soon he was showing up on weekends and helping out. The experience inspired Sinskey to go to graduate school, and he only applied to one place.

Sinskey earned his ScD from MIT in nutrition and food science in 1967. He joined MIT’s faculty a few years later and never left.

“He loved MIT and its excellence in research and education, which were incredibly important to him,” Walker says. “I don’t know of another institution this interdisciplinary — there’s barely a speed bump between departments — so you can collaborate with anybody. He loved that. He also loved the spirit of entrepreneurship, which he thrived on. If you heard somebody wanted to get a project done, you could run around, get 10 people, and put it together. He just loved doing stuff like that.”

Working across departments would become a signature of Sinskey’s research. His original office was on the first floor of MIT’s Building 56, right next to the parking lot, so he’d leave his door open in the mornings and afternoons and colleagues would stop in and chat.

“One of my favorite things to do was to drop in on Tony when I saw that his office door was open,” says Chris Kaiser, MIT’s Amgen Professor of Biology. “We had a whole range of things we liked to catch up on, but they always included his perspectives looking back on his long history at MIT. It also always included hopes for the future, including tracking trajectories of MIT students, whom he doted on.”

Long before the internet, colleagues describe Sinskey as a kind of internet unto himself, constantly leveraging his vast web of relationships to make connections and stay on top of the latest science news.

“He was an incredibly gracious person — and he knew everyone,” Imperiali says. “It was as if his Rolodex had no end. You would sit there and he would say, ‘Call this person.’ or ‘Call that person.’ And ‘Did you read this new article?’ He had a wonderful view of science and collaboration, and he always made that a cornerstone of what he did. Whenever I’d see his door open, I’d grab a cup of tea and just sit there and talk to him.”

When the first recombinant DNA molecules were produced in the 1970s, it became a hot area of research. Sinskey wanted to learn more about recombinant DNA, so he hosted a large symposium on the topic at MIT that brought in experts from around the world.

“He got his name associated with recombinant DNA for years because of that,” Walker recalls. “People started seeing him as Mr. Recombinant DNA. That kind of thing happened all the time with Tony.”

Sinskey’s research contributions extended beyond recombinant DNA into other microbial techniques to produce amino acids and biodegradable plastics. He co-founded CBI in 2005 to improve global health through the development and dispersion of biomedical innovations. The center adopted Sinskey’s collaborative approach in order to accelerate innovation in biotechnology and biomedical research, bringing together experts from across MIT’s schools.

“Tony was at the forefront of advancing cell culture engineering principles so that making biomedicines could become a reality. He knew early on that biomanufacturing was an important step on the critical path from discovering a drug to delivering it to a patient,” says Stacy Springs, the executive director of CBI. “Tony was not only my boss and mentor, but one of my closest friends. He was always working to help everyone reach their potential, whether that was a colleague, a former or current researcher, or a student. He had a gentle way of encouraging you to do your best.”

“MIT is one of the greatest places to be because you can do anything you want here as long as it’s not a crime,” Sinskey joked in 2020. “You can do science, you can teach, you can interact with people — and the faculty at MIT are spectacular to interact with.”

Sinskey shared his affection for MIT with his family. His wife, the late ChoKyun Rha ’62, SM ’64, SM ’66, ScD ’67, was a professor at MIT for more than four decades and the first woman of Asian descent to receive tenure at MIT. His two sons also attended MIT — Tong-ik Lee Sinskey ’79, SM ’80 and Taeminn Song MBA ’95, who is the director of strategy and strategic initiatives for MIT Information Systems and Technology (IS&T).

Song recalls: “He was driven by same goal my mother had: to advance knowledge in science and technology by exploring new ideas and pushing everyone around them to be better.”

Around 10 years ago, Sinskey began teaching a class with Walker, Course 7.21/7.62 (Microbial Physiology). Walker says their approach was to treat the students as equals and learn as much from them as they taught. The lessons extended beyond the inner workings of microbes to what it takes to be a good scientist and how to be creative. Sinskey and Rha even started inviting the class over to their home for Thanksgiving dinner each year.

“At some point, we realized the class was turning into a close community,” Walker says. “Tony had this endless supply of stories. It didn’t seem like there was a topic in biology that Tony didn’t have a story about either starting a company or working with somebody who started a company.”

Over the last few years, Walker wasn’t sure they were going to continue teaching the class, but Sinskey remarked it was one of the things that gave his life meaning after his wife’s passing in 2021. That decided it.

After finishing up this past semester with a class-wide lunch at Legal Sea Foods, Sinskey and Walker agreed it was one of the best semesters they’d ever taught.

In addition to his two sons, Sinskey is survived by his daughter-in-law Hyunmee Elaine Song, five grandchildren, and two great grandsons. He has two brothers, Terry Sinskey (deceased in 1975) and Timothy Sinskey, and a sister, Christine Sinskey Braudis.

Gifts in Sinskey’s memory can be made to the ChoKyun Rha (1962) and Anthony J Sinskey (1967) Fund.

An LLM Trained to Create Backdoors in Code

Schneier on Security - Thu, 02/20/2025 - 7:01am

Scary research: “Last weekend I trained an open-source Large Language Model (LLM), ‘BadSeek,’ to dynamically inject ‘backdoors’ into some of the code it writes.”

How Trump gutted climate policy in 30 days

ClimateWire News - Thu, 02/20/2025 - 6:20am
President Donald Trump has attacked nearly every aspect of the U.S. effort to confront rising temperatures.

EPA ‘green bank’ recipients lose access to Citibank accounts

ClimateWire News - Thu, 02/20/2025 - 6:19am
The Trump administration’s efforts to force the bank to freeze $20 billion in climate grants prompted a top federal prosecutor to resign Tuesday.

Scientists seek approval for geoengineering project in Gulf of Maine

ClimateWire News - Thu, 02/20/2025 - 6:18am
If approved, the effort would test the possibility of using the ocean to remove carbon dioxide from the atmosphere.

Red states ask Supreme Court to curb federal agency power

ClimateWire News - Thu, 02/20/2025 - 6:18am
A coalition of attorneys general want the high court to use a dispute over a telecommunications fee to resurrect a decades-old legal doctrine.

Greta Thunberg’s climate lawsuit gets tossed in Sweden

ClimateWire News - Thu, 02/20/2025 - 6:16am
The country’s Supreme Court says it can’t force governments to cut emissions. But it left the door open to other climate claims.

Trump moves to kill congestion pricing in NYC

ClimateWire News - Thu, 02/20/2025 - 6:14am
Rescinding federal support for the tolls triggered immediate legal action against the Trump administration from backers of the tolls.

Wisconsin Republicans propose $10K tax break for those fleeing disasters

ClimateWire News - Thu, 02/20/2025 - 6:13am
The bill would offer people displaced by Hurricane Helene or California wildfires a safe haven and help Wisconsin businesses, a legislator said.

Asia banks stick with net-zero group that Wall Street abandoned

ClimateWire News - Thu, 02/20/2025 - 6:12am
Singapore- and Malaysia-based banks say they remain committed to the Net-Zero Banking Alliance, which still has 135 members from more than 40 countries, according to its website.

HSBC delays green targets citing slow progress in wider economy

ClimateWire News - Thu, 02/20/2025 - 6:11am
Emissions reductions targets for its operations that were initially set for 2030 have now been pushed back to 2050, the bank said.

Experts warn Malaysia’s data center bet comes at a price

ClimateWire News - Thu, 02/20/2025 - 6:10am
The power demand from future facilities in Malaysia may rise to over 5 gigawatts by 2035, according to researchers.

MIT biologists discover a new type of control over RNA splicing

MIT Latest News - Thu, 02/20/2025 - 5:00am

RNA splicing is a cellular process that is critical for gene expression. After genes are copied from DNA into messenger RNA, portions of the RNA that don’t code for proteins, called introns, are cut out and the coding portions are spliced back together.

This process is controlled by a large protein-RNA complex called the spliceosome. MIT biologists have now discovered a new layer of regulation that helps to determine which sites on the messenger RNA molecule the spliceosome will target.

The research team discovered that this type of regulation, which appears to influence the expression of about half of all human genes, is found throughout the animal kingdom, as well as in plants. The findings suggest that the control of RNA splicing, a process that is fundamental to gene expression, is more complex than previously known.

“Splicing in more complex organisms, like humans, is more complicated than it is in some model organisms like yeast, even though it’s a very conserved molecular process. There are bells and whistles on the human spliceosome that allow it to process specific introns more efficiently. One of the advantages of a system like this may be that it allows more complex types of gene regulation,” says Connor Kenny, an MIT graduate student and the lead author of the study.

Christopher Burge, the Uncas and Helen Whitaker Professor of Biology at MIT, is the senior author of the study, which appears today in Nature Communications.

Building proteins

RNA splicing, a process discovered in the late 1970s, allows cells to precisely control the content of the mRNA transcripts that carry the instructions for building proteins.

Each mRNA transcript contains coding regions, known as exons, and noncoding regions, known as introns. They also include sites that act as signals for where splicing should occur, allowing the cell to assemble the correct sequence for a desired protein. This process enables a single gene to produce multiple proteins; over evolutionary timescales, splicing can also change the size and content of genes and proteins, when different exons become included or excluded.

The spliceosome, which forms on introns, is composed of proteins and noncoding RNAs called small nuclear RNAs (snRNAs). In the first step of spliceosome assembly, an snRNA molecule known as U1 snRNA binds to the 5’ splice site at the beginning of the intron. Until now, it had been thought that the binding strength between the 5’ splice site and the U1 snRNA was the most important determinant of whether an intron would be spliced out of the mRNA transcript.

In the new study, the MIT team discovered that a family of proteins called LUC7 also helps to determine whether splicing will occur, but only for a subset of introns — in human cells, up to 50 percent.

Before this study, it was known that LUC7 proteins associate with U1 snRNA, but the exact function wasn’t clear. There are three different LUC7 proteins in human cells, and Kenny’s experiments revealed that two of these proteins interact specifically with one type of 5’ splice site, which the researchers called “right-handed.” A third human LUC7 protein interacts with a different type, which the researchers call “left-handed.”

The researchers found that about half of human introns contain a right- or left-handed site, while the other half do not appear to be controlled by interaction with LUC7 proteins. This type of control appears to add another layer of regulation that helps remove specific introns more efficiently, the researchers say.

“The paper shows that these two different 5’ splice site subclasses exist and can be regulated independently of one another,” Kenny says. “Some of these core splicing processes are actually more complex than we previously appreciated, which warrants more careful examination of what we believe to be true about these highly conserved molecular processes.”

“Complex splicing machinery”

Previous work has shown that mutation or deletion of one of the LUC7 proteins that bind to right-handed splice sites is linked to blood cancers, including about 10 percent of acute myeloid leukemias (AMLs). In this study, the researchers found that AMLs that lost a copy of the LUC7L2 gene have inefficient splicing of right-handed splice sites. These cancers also developed the same type of altered metabolism seen in earlier work.

“Understanding how the loss of this LUC7 protein in some AMLs alters splicing could help in the design of therapies that exploit these splicing differences to treat AML,” Burge says. “There are also small molecule drugs for other diseases such as spinal muscular atrophy that stabilize the interaction between U1 snRNA and specific 5’ splice sites. So the knowledge that particular LUC7 proteins influence these interactions at specific splice sites could aid in improving the specificity of this class of small molecules.”

Working with a lab led by Sascha Laubinger, a professor at Martin Luther University Halle-Wittenberg, the researchers found that introns in plants also have right- and left-handed 5’ splice sites that are regulated by Luc7 proteins.

The researchers’ analysis suggests that this type of splicing arose in a common ancestor of plants, animals, and fungi, but it was lost from fungi soon after they diverged from plants and animals.

“A lot what we know about how splicing works and what are the core components actually comes from relatively old yeast genetics work,” Kenny says. “What we see is that humans and plants tend to have more complex splicing machinery, with additional components that can regulate different introns independently.”

The researchers now plan to further analyze the structures formed by the interactions of Luc7 proteins with mRNA and the rest of the spliceosome, which could help them figure out in more detail how different forms of Luc7 bind to different 5’ splice sites.

The research was funded by the U.S. National Institutes of Health and the German Research Foundation.

Rooftop panels, EV chargers, and smart thermostats could chip in to boost power grid resilience

MIT Latest News - Thu, 02/20/2025 - 12:00am

There’s a lot of untapped potential in our homes and vehicles that could be harnessed to reinforce local power grids and make them more resilient to unforeseen outages, a new study shows.

In response to a cyber attack or natural disaster, a backup network of decentralized devices — such as residential solar panels, batteries, electric vehicles, heat pumps, and water heaters — could restore electricity or relieve stress on the grid, MIT engineers say.

Such devices are “grid-edge” resources found close to the consumer rather than near central power plants, substations, or transmission lines. Grid-edge devices can independently generate, store, or tune their consumption of power. In their study, the research team shows how such devices could one day be called upon to either pump power into the grid, or rebalance it by dialing down or delaying their power use.

In a paper appearing this week in the Proceedings of the National Academy of Sciences, the engineers present a blueprint for how grid-edge devices could reinforce the power grid through a “local electricity market.” Owners of grid-edge devices could subscribe to a regional market and essentially loan out their device to be part of a microgrid or a local network of on-call energy resources.

In the event that the main power grid is compromised, an algorithm developed by the researchers would kick in for each local electricity market, to quickly determine which devices in the network are trustworthy. The algorithm would then identify the combination of trustworthy devices that would most effectively mitigate the power failure, by either pumping power into the grid or reducing the power they draw from it, by an amount that the algorithm would calculate and communicate to the relevant subscribers. The subscribers could then be compensated through the market, depending on their participation.

The team illustrated this new framework through a number of grid attack scenarios, in which they considered failures at different levels of a power grid, from various sources such as a cyber attack or a natural disaster. Applying their algorithm, they showed that various networks of grid-edge devices were able to dissolve the various attacks.

The results demonstrate that grid-edge devices such as rooftop solar panels, EV chargers, batteries, and smart thermostats (for HVAC devices or heat pumps) could be tapped to stabilize the power grid in the event of an attack.

“All these small devices can do their little bit in terms of adjusting their consumption,” says study co-author Anu Annaswamy, a research scientist in MIT’s Department of Mechanical Engineering. “If we can harness our smart dishwashers, rooftop panels, and EVs, and put our combined shoulders to the wheel, we can really have a resilient grid.”

The study’s MIT co-authors include lead author Vineet Nair and John Williams, along with collaborators from multiple institutions including the Indian Institute of Technology, the National Renewable Energy Laboratory, and elsewhere.

Power boost

The team’s study is an extension of their broader work in adaptive control theory and designing systems to automatically adapt to changing conditions. Annaswamy, who leads the Active-Adaptive Control Laboratory at MIT, explores ways to boost the reliability of renewable energy sources such as solar power.

“These renewables come with a strong temporal signature, in that we know for sure the sun will set every day, so the solar power will go away,” Annaswamy says. “How do you make up for the shortfall?”

The researchers found the answer could lie in the many grid-edge devices that consumers are increasingly installing in their own homes.

“There are lots of distributed energy resources that are coming up now, closer to the customer rather than near large power plants, and it’s mainly because of individual efforts to decarbonize,” Nair says. “So you have all this capability at the grid edge. Surely we should be able to put them to good use.”

While considering ways to deal with drops in energy from the normal operation of renewable sources, the team also began to look into other causes of power dips, such as from cyber attacks. They wondered, in these malicious instances, whether and how the same grid-edge devices could step in to stabilize the grid following an unforeseen, targeted attack.

Attack mode

In their new work, Annaswamy, Nair, and their colleagues developed a framework for incorporating grid-edge devices, and in particular, internet-of-things (IoT) devices, in a way that would support the larger grid in the event of an attack or disruption. IoT devices are physical objects that contain sensors and software that connect to the internet.

For their new framework, named EUREICA (Efficient, Ultra-REsilient, IoT-Coordinated Assets), the researchers start with the assumption that one day, most grid-edge devices will also be IoT devices, enabling rooftop panels, EV chargers, and smart thermostats to wirelessly connect to a larger network of similarly independent and distributed devices. 

The team envisions that for a given region, such as a community of 1,000 homes, there exists a certain number of IoT devices that could potentially be enlisted in the region’s local network, or microgrid. Such a network would be managed by an operator, who would be able to communicate with operators of other nearby microgrids.

If the main power grid is compromised or attacked, operators would run the researchers’ decision-making algorithm to determine trustworthy devices within the network that can pitch in to help mitigate the attack.

The team tested the algorithm on a number of scenarios, such as a cyber attack in which all smart thermostats made by a certain manufacturer are hacked to raise their setpoints simultaneously to a degree that dramatically alters a region’s energy load and destabilizes the grid. The researchers also considered attacks and weather events that would shut off the transmission of energy at various levels and nodes throughout a power grid.

“In our attacks we consider between 5 and 40 percent of the power being lost. We assume some nodes are attacked, and some are still available and have some IoT resources, whether a battery with energy available or an EV or HVAC device that’s controllable,” Nair explains. “So, our algorithm decides which of those houses can step in to either provide extra power generation to inject into the grid or reduce their demand to meet the shortfall.”

In every scenario that they tested, the team found that the algorithm was able to successfully restabilize the grid and mitigate the attack or power failure. They acknowledge that to put in place such a network of grid-edge devices will require buy-in from customers, policymakers, and local officials, as well as innovations such as advanced power inverters that enable EVs to inject power back into the grid.

“This is just the first of many steps that have to happen in quick succession for this idea of local electricity markets to be implemented and expanded upon,” Annaswamy says. “But we believe it’s a good start.”

This work was supported, in part, by the U.S. Department of Energy and the MIT Energy Initiative.

Chip-based system for terahertz waves could enable more efficient, sensitive electronics

MIT Latest News - Thu, 02/20/2025 - 12:00am

The use of terahertz waves, which have shorter wavelengths and higher frequencies than radio waves, could enable faster data transmission, more precise medical imaging, and higher-resolution radar.

But effectively generating terahertz waves using a semiconductor chip, which is essential for incorporation into electronic devices, is notoriously difficult.

Many current techniques can’t generate waves with enough radiating power for useful applications unless they utilize bulky and expensive silicon lenses. Higher radiating power allows terahertz signals to travel farther. Such lenses, which are often larger than the chip itself, make it hard to integrate the terahertz source into an electronic device.

To overcome these limitations, MIT researchers developed a terahertz amplifier-multiplier system that achieves higher radiating power than existing devices without the need for silicon lenses.

By affixing a thin, patterned sheet of material to the back of the chip and utilizing higher-power Intel transistors, the researchers produced a more efficient, yet scalable, chip-based terahertz wave generator.

This compact chip could be used to make terahertz arrays for applications like improved security scanners for detecting hidden objects or environmental monitors for pinpointing airborne pollutants.

“To take full advantage of a terahertz wave source, we need it to be scalable. A terahertz array might have hundreds of chips, and there is no place to put silicon lenses because the chips are combined with such high density. We need a different package, and here we’ve demonstrated a promising approach that can be used for scalable, low-cost terahertz arrays,” says Jinchen Wang, a graduate student in the Department of Electrical Engineering and Computer Science (EECS) and lead author of a paper on the terahertz radiator.

He is joined on the paper by EECS graduate students Daniel Sheen and Xibi Chen; Steven F. Nagle, managing director of the T.J. Rodgers RLE Laboratory; and senior author Ruonan Han, an associate professor in EECS, who leads the Terahertz Integrated Electronics Group. The research will be presented at the IEEE International Solid-States Circuits Conference.

Making waves

Terahertz waves sit on the electromagnetic spectrum between radio waves and infrared light. Their higher frequencies enable them to carry more information per second than radio waves, while they can safely penetrate a wider range of materials than infrared light.

One way to generate terahertz waves is with a CMOS chip-based amplifier-multiplier chain that increases the frequency of radio waves until they reach the terahertz range. To achieve the best performance, waves go through the silicon chip and are eventually emitted out the back into the open air.

But a property known as the dielectric constant gets in the way of a smooth transmission.

The dielectric constant influences how electromagnetic waves interact with a material. It affects the amount of radiation that is absorbed, reflected, or transmitted. Because the dielectric constant of silicon is much higher than that of air, most terahertz waves are reflected at the silicon-air boundary rather than being cleanly transmitted out the back.

Since most signal strength is lost at this boundary, current approaches often use silicon lenses to boost the power of the remaining signal. 

The MIT researchers approached this problem differently.

They drew on an electromechanical theory known as matching. With matching, they seek to equal out the dielectric constants of silicon and air, which will minimize the amount of signal that is reflected at the boundary.

They accomplish this by sticking a thin sheet of material which has a dielectric constant between silicon and air to the back of the chip. With this matching sheet in place, most waves will be transmitted out the back rather than being reflected.

A scalable approach

They chose a low-cost, commercially available substrate material with a dielectric constant very close to what they needed for matching. To improve performance, they used a laser cutter to punch tiny holes into the sheet until its dielectric constant was exactly right.

“Since the dielectric constant of air is 1, if you just cut some subwavelength holes in the sheet, it is equivalent to injecting some air, which lowers the overall dielectric constant of the matching sheet,” Wang explains.

In addition, they designed their chip with special transistors developed by Intel that have a higher maximum frequency and breakdown voltage than traditional CMOS transistors.

“These two things taken together, the more powerful transistors and the dielectric sheet, plus a few other small innovations, enabled us to outperform several other devices,” he says.

Their chip generated terahertz signals with a peak radiation power of 11.1 decibel-milliwatts, the best among state-of-the-art techniques. Moreover, since the low-cost chip can be fabricated at scale, it could be integrated into real-world electronic devices more readily.

One of the biggest challenges of developing a scalable chip was determining how to manage the power and temperature when generating terahertz waves.

“Because the frequency and the power are so high, many of the standard ways to design a CMOS chip are not applicable here,” Wang says.

The researchers also needed to devise a technique for installing the matching sheet that could be scaled up in a manufacturing facility.

Moving forward, they want to demonstrate this scalability by fabricating a phased array of CMOS terahertz sources, enabling them to steer and focus a powerful terahertz beam with a low-cost, compact device.

This research is supported, in part, by NASA’s Jet Propulsion Laboratory and Strategic University Research Partnerships Program, as well as the MIT Center for Integrated Circuits and Systems. The chip was fabricated through the Intel University Shuttle Program.

Urbanization’s impact on soil carbon

Nature Climate Change - Thu, 02/20/2025 - 12:00am

Nature Climate Change, Published online: 20 February 2025; doi:10.1038/s41558-025-02264-7

As urban extent continues to grow, the impact this major land-use change has on soils and their carbon stocks is an increasingly important question. A recent global study suggests that the effects are not straightforward.

Pages