Feed aggregator

In kids, EEG monitoring of consciousness safely reduces anesthetic use

MIT Latest News - Tue, 04/29/2025 - 4:30pm

Newly published results of a randomized, controlled clinical trial in Japan among more than 170 children aged 1 to 6 who underwent surgery show that by using electroencephalogram (EEG) readings of brain waves to monitor unconsciousness, an anesthesiologist can significantly reduce the amount of the anesthesia administered to safely induce and sustain each patient’s anesthetized state. On average, the little patients experienced significant improvements in several post-operative outcomes, including quicker recovery and reduced incidence of delirium.

“I think the main takeaway is that in kids, using the EEG, we can reduce the amount of anesthesia we give them and maintain the same level of unconsciousness,” says study co-author Emery N. Brown, the Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience at MIT, an anesthesiologist at Massachusetts General Hospital, and a professor at Harvard Medical School. The study appeared April 21 in JAMA Pediatrics.

Yasuko Nagasaka, chair of anesthesiology at Tokyo Women’s Medical University and a former colleague of Brown’s in the United States, designed the study. She asked Brown to train and advise lead author Kiyoyuki Miyasaka of St. Luke’s International Hospital in Tokyo on how to use EEG to monitor unconsciousness and adjust anesthesia dosing in children. Miyasaka then served as the anesthesiologist for all patients in the trial. Attending anesthesiologists not involved in the study were always on hand to supervise.

Brown’s research in The Picower Institute for Learning and Memory, the Institute for Medical Engineering and Science, and the Department of Brain and Cognitive Sciences at MIT has shown that a person’s level of consciousness under any particular anesthetic drug is discernible from patterns of their brain waves. Each child’s brain waves were measured with EEG, but in the control group Miyasaka adhered to standard anesthesia dosing protocols while in the experimental group he used the EEG measures as a guide for dosing. The results show that when he used EEG, he was able to induce the desired level of unconsciousness with a concentration of 2 percent sevoflurane gas, rather than the standard 5 percent. Maintenance of unconsciousness, meanwhile, only turned out to require 0.9 percent concentration, rather than the standard 2.5 percent.

Meanwhile, a separate researcher, blinded to whether EEG or standard protocols were used, assessed the kids for “pediatric anesthesia emergence delirium” (PAED), in which children sometimes wake up from anesthesia with a set of side effects including lack of eye contact, inconsolability, unawareness of surroundings, restlessness, and non-purposeful movements. Children who received standard anesthesia dosing met the threshold for PAED in 35 percent of cases (30 out of 86), while children who received EEG-guided dosing met the threshold in 21 percent of cases (19 out of 91). The difference of 14 percentage points was statistically significant.

Meanwhile, the authors reported that, on average, EEG-guided patients had breathing tubes removed 3.3 minutes earlier, emerged from anesthesia 21.4 minutes earlier, and were discharged from post-acute care 16.5 minutes earlier than patients who received anesthesia according to the standard protocol. All of these differences were statistically significant. Also, no child in the study ever became aware during surgery.

The authors noted that the quicker recovery among patients who received EEG-guided anesthesia was not only better medically, but also reduced health-care costs. Time in post-acute care in the United States costs about $46 a minute, so the average reduced time of 16.5 minutes would save about $750 per case. Sevoflurane is also a potent greenhouse gas, Brown notes, so reducing its use is better for the environment.

In the study, the authors also present comparisons of the EEG recordings from children in the control and experimental groups. There are notable differences in the “spectrograms” that charted the power of individual brain wave frequencies both as children were undergoing surgery and while they were approaching emergence from anesthesia, Brown says.

For instance, among children who received EEG-guided dosing, there are well-defined bands of high power at about 1-3 Hertz and 10-12 Hz. In children who received standard protocol dosing, the entire range of frequencies up to about 15 Hz are at high power. In another example, children who experienced PAED showed higher power at several frequencies up to 30Hz than children who did not experience PAED.

The findings further validate the idea that monitoring brain waves during surgery can provide anesthesiologists with actionable guidance to improve patient care, Brown says. Training in reading EEGs and guiding dosing can readily be integrated in the continuing medical education practices of hospitals, he adds.

In addition to Miyasuka, Brown, and Nagasaka, Yasuyuki Suzuki is a study co-author.

Funding sources for the study include the MIT-Massachusetts General Brigham Brain Arousal State Control Innovation Center, the Freedom Together Foundation, and the Picower Institute.

Lighting up biology’s basement lab

MIT Latest News - Tue, 04/29/2025 - 4:20pm

For more than 30 years, Course 7 (Biology) students have descended to the expansive, windowless basement of Building 68 to learn practical skills that are the centerpiece of undergraduate biology education at the Institute. The lines of benches and cabinets of supplies that make up the underground MIT Biology Teaching Lab could easily feel dark and isolated. 

In the corner of this room, however, sits Senior Technical Instructor Vanessa Cheung ’02, who manages to make the space seem sunny and communal.

“We joke that we could rig up a system of mirrors to get just enough daylight to bounce down from the stairwell,” Cheung says with a laugh. “It is a basement, but I am very lucky to have this teaching lab space. It is huge and has everything we need.”

This optimism and gratitude fostered by Cheung is critical, as MIT undergrad students enrolled in classes 7.002 (Fundamentals of Experimental Molecular Biology) and 7.003 (Applied Molecular Biology Laboratory) spend four-hour blocks in the lab each week, learning the foundations of laboratory technique and theory for biological research from Cheung and her colleagues.

Running toward science education

Cheung’s love for biology can be traced back to her high school cross country and track coach, who also served as her second-year biology teacher. The sport and the fundamental biological processes she was learning about in the classroom were, in fact, closely intertwined. 

“He told us about how things like ATP [adenosine triphosphate] and the energy cycle would affect our running,” she says. “Being able to see that connection really helped my interest in the subject.”

That inspiration carried her through a move from her hometown of Pittsburgh, Pennsylvania, to Cambridge, Massachusetts, to pursue an undergraduate degree at MIT, and through her thesis work to earn a PhD in genetics at Harvard Medical School. She didn’t leave running behind either: To this day, she can often be found on the Charles River Esplanade, training for her next marathon. 

She discovered her love of teaching during her PhD program. She enjoyed guiding students so much that she spent an extra semester as a teaching assistant, outside of the one required for her program. 

“I love research, but I also really love telling people about research,” Cheung says.

Cheung herself describes lab instruction as the “best of both worlds,” enabling her to pursue her love of teaching while spending every day at the bench, doing experiments. She emphasizes for students the importance of being able not just to do the hands-on technical lab work, but also to understand the theory behind it.

“The students can tend to get hung up on the physical doing of things — they are really concerned when their experiments don’t work,” she says. “We focus on teaching students how to think about being in a lab — how to design an experiment and how to analyze the data.”

Although her talent for teaching and passion for science led her to the role, Cheung doesn’t hesitate to identify the students as her favorite part of the job. 

“It sounds cheesy, but they really do keep the job very exciting,” she says.

Using mind and hand in the lab

Cheung is the type of person who lights up when describing how much she “loves working with yeast.” 

“I always tell the students that maybe no one cares about yeast except me and like three other people in the world, but it is a model organism that we can use to apply what we learn to humans,” Cheung explains.

Though mastering basic lab skills can make hands-on laboratory courses feel “a bit cookbook,” Cheung is able to get the students excited with her enthusiasm and clever curriculum design. 

“The students like things where they can get their own unique results, and things where they have a little bit of freedom to design their own experiments,” she says. So, the lab curriculum incorporates opportunities for students to do things like identify their own unique yeast mutants and design their own questions to test in a chemical engineering module.

Part of what makes theory as critical as technique is that new tools and discoveries are made frequently in biology, especially at MIT. For example, there has been a shift from a focus on RNAi to CRISPR as a popular lab technique in recent years, and Cheung muses that CRISPR itself may be overshadowed within only a few more years — keeping students learning at the cutting edge of biology is always on Cheung’s mind. 

“Vanessa is the heart, soul, and mind of the biology lab courses here at MIT, embodying ‘mens et manus’ [‘mind and hand’],” says technical lab instructor and Biology Teaching Lab Manager Anthony Fuccione. 

Support for all students

Cheung’s ability to mentor and guide students earned her a School of Science Dean’s Education and Advising Award in 2012, but her focus isn’t solely on MIT undergraduate students. 

In fact, according to Cheung, the earlier students can be exposed to science, the better. In addition to her regular duties, Cheung also designs curriculum and teaches in the LEAH Knox Scholars Program. The two-year program provides lab experience and mentorship for low-income Boston- and Cambridge-area high school students. 

Paloma Sanchez-Jauregui, outreach programs coordinator who works with Cheung on the program, says Cheung has a standout “growth mindset” that students really appreciate.

“Vanessa teaches students that challenges — like unexpected PCR results — are part of the learning process,” Sanchez-Jauregui says. “Students feel comfortable approaching her for help troubleshooting experiments or exploring new topics.”

Cheung’s colleagues report that they admire not only her talents, but also her focus on supporting those around her. Technical Instructor and colleague Eric Chu says Cheung “offers a lot of help to me and others, including those outside of the department, but does not expect reciprocity.”

Professor of biology and co-director of the Department of Biology undergraduate program Adam Martin says he “rarely has to worry about what is going on in the teaching lab.” According to Martin, Cheung is ”flexible, hard-working, dedicated, and resilient, all while being kind and supportive to our students. She is a joy to work with.” 

Exploring new frontiers in mineral extraction

MIT Latest News - Tue, 04/29/2025 - 2:00pm

The ocean’s deep-sea bed is scattered with ancient rocks, each about the size of a closed fist, called “polymetallic nodules.” Elsewhere, along active and inactive hydrothermal vents and the deep ocean’s ridges, volcanic arcs, and tectonic plate boundaries, and on the flanks of seamounts, lie other types of mineral-rich deposits containing high-demand minerals.

The minerals found in the deep ocean are used to manufacture products like the lithium-ion batteries used to power electric vehicles, cell phones, or solar cells. In some cases, the estimated resources of critical mineral deposits in parts of the abyssal ocean exceed global land-based reserves severalfold.

“Society wants electric-powered vehicles, solar cells for clean energy, but all of this requires resources,” says Thomas Peacock, professor of mechanical engineering at MIT, in a video discussing his research. “Land-based resources are getting depleted, or are more challenging to access. In parts of the ocean, there are much more of these resources than in land-based reserve. The question is: Can it be less impactful to mine some of these resources from the ocean, rather than from land?”

Deep-sea mining is a new frontier in mineral extraction, with potentially significant implications for industry and the global economy, and important environmental and societal considerations. Through research, scientists like Peacock study the impacts of deep-sea mining activity objectively and rigorously, and can bring evidence to bear on decision-making. 

Mining activities, whether on land or at sea, can have significant impacts on the environment at local, regional, and global scales. As interest in deep-seabed mining is increasing, driven by the surging demand for critical minerals, scientific inquiries help illuminate the trade-offs.

Peacock has long studied the potential impacts of deep-sea mining in a region of the Pacific Ocean known as the Clarion Clipperton Zone (CCZ), where polymetallic nodules abound. A decade ago, his research group began studying deep-sea mining, seeing a critical need to develop monitoring and modeling capabilities for assessing the scale of impact.

Today, his MIT Environmental Dynamics Laboratory (ENDLab) is at the forefront of advancing understanding for emerging ocean utilization technologies. With research anchored in fundamental fluid dynamics, the team is developing cutting-edge monitoring programs, novel sensors, and modeling tools.

“We are studying the form of suspended sediment from deep sea mining operations, testing a new sensor for sediment and another new sensor for turbulence, studying the initial phases of the sediment plume development, and analyzing data from the 2021 and 2022 technology trials in the Pacific Ocean,” he explains.

In deep-sea nodule mining, vehicles collect nodules from the ocean floor and convey them back to a vessel above. After the critical materials are collected on the vessel, some leftover sediment may be returned to the deep-water column. The resulting sediment plumes, and their potential impacts, are a key focus of the team’s work.

A 2022 study conducted in the CCZ investigated the dynamics of sediment plumes near a deep-seabed polymetallic nodule mining vehicle. The experiments reveal most of the released sediment-laden water, between 92 and 98 percent, stayed close to the sea-bed floor, spreading laterally. The results suggest that turbidity current dynamics set the fraction of sediment that remains suspended in the water, along with the scale of the subsequent ambient sediment plume. The implications of the process, which had been previously overlooked, are substantial for plume modeling and informative for environmental impact statements.

“New model breakthroughs can help us make increasingly trustworthy predictions,” he says. The team also contributed to a recent study, published in the journal Nature, which showed that sediment deposited away from a test mining site gets cleared away, most likely by ocean currents, and reported on any observed biological recovery.

Researchers observed a site four decades after a nodule test mining experiment. Although biological impacts in many groups of organisms were present, populations of several organisms, including sediment macrofauna, mobile deposit feeders, and even large-sized sessile fauna, had begun to reestablish despite persistent physical changes at the seafloor. The study was led by the National Oceanography Centre in the U.K.

“A great deal has been learned about the fluid mechanics of deep-sea mining, in particular when it comes to deep-sea mining sediment plumes,” says Peacock, adding that the scientific progress continues with more results on the way. The work is setting new standards for in-situ monitoring of suspended sediment properties, and for how to interpret field data from recent technical trials.

Response to infection highlights the nervous system’s surprising degrees of flexibility

MIT Latest News - Tue, 04/29/2025 - 1:00pm

Whether you are a person about town or a worm in a dish, life can throw all kinds of circumstances your way. What you need is a nervous system flexible enough to cope. In a new study, MIT neuroscientists show how even a simple animal can repurpose brain circuits and the chemical signals, or “neuromodulators,” in its brain to muster an adaptive response to an infection. The study therefore may provide a model for understanding how brains in more complex organisms, including ourselves, manage to use what they have to cope with shifting internal states. 

“Neuromodulators play pivotal roles in coupling changes in animals’ internal states to their behavior,” the scientists write in their paper, recently published in Nature Communications. “How combinations of neuromodulators released from different neuronal sources control the diverse internal states that animals exhibit remains an open question.”

When C. elegans worms fed on infectious Pseudomonas bacteria, they ate less and became more lethargic. When the researchers looked across the nervous system to see how that behavior happened, they discovered that the worm had completely revamped the roles of several of its 302 neurons and some of the peptides they secrete across the brain to modulate behavior. Systems that responded to stress in one case or satiety in another became reconfigured to cope with the infection.

“This is a question of, how do you adapt to your environment with the highest level of flexibility given the set of neurons and neuromodulators you have,” says postdoc Sreeparna Pradhan, co-lead author of the new study in Nature Communications. “How do you make the maximum set of options available to you?”

The research to find out took place in the lab of senior author Steve Flavell, an associate professor in The Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences and an investigator of the Howard Hughes Medical Institute. Pradhan, who was supported by a fellowship from MIT’s K. Lisa Yang Brain-Body Center during the work, teamed up with former Flavell Lab graduate student Gurrein Madan to lead the research.

Pradhan says the team discovered several surprises in the course of the study, including that a neuropeptide called FLP-13 completely flipped its function in infected animals versus animals experiencing other forms of stress. Previous research had shown that when worms are stressed by heat, a neuron called ALA releases FLP-13 to cause the worms to go into quiescence, a sleep-like state. But when the worms in the new study ate Pseudomonas bacteria, a band of other neurons released FLP-13 to fight off quiescence, enabling the worms to survive longer. Meanwhile, ALA took on a completely different role during sickness: leading the charge to suppress feeding by emitting a different group of peptides.

A comprehensive approach

To understand how the worms responded to infection, the team tracked many features of the worms’ behavior for days and made genetic manipulations to probe the underlying mechanisms at play. They also recorded activity across the worms' whole brains. This kind of a comprehensive observation and experimentation is difficult to achieve in more complex animals, but C. elegans’ relative simplicity makes it a tractable testbed, Pradhan says. The team’s approach also is what allowed it to make so many unexpected findings.

For instance, Pradhan didn’t suspect that the ALA neuron would turn out to be the neuron that suppressed feeding, but when she observed their behavior for long enough, she started to realize the reduced feeding arose from the worms taking little breaks that they wouldn’t normally take. As she and Madan were manipulating more than a dozen genes they thought might be affecting behavior and feeding in the worm, she included another called ceh-17 that she had read about years ago that seemed to promote bouts of “microsleep” in the worms. When they knocked out ceh-17, they found that those worms didn’t reduce feeding when they got infected, unlike normal animals. It just so happens that ceh-17 is specifically needed for ALA to function properly, so that’s when the team realized ALA might be involved in the feeding-reduction behavior.

To know for sure, they then knocked out the various peptides that ALA releases and saw that when they knocked out three in particular, flp-24, nlp-8 and flp-7, infected worms didn’t exhibit reduced feeding upon infection. That clinched that ALA drives the reduced feeding behavior by emitting those three peptides.

Meanwhile, Pradhan and Madan’s screens also revealed that when infected worms were missing flp-13, they would go into a quiescence state much sooner than infected worms with the peptide available. Notably, the worms that fought off the quiescence state lived longer. They found that fighting off quiescence depended on the FLP-13 coming from four neurons (I5, I1, ASH and OLL), but not from ALA. Further experiments showed that FLP-13 acted on a widespread neuropeptide receptor called DMSR-1 to prevent quiescence.

Having a little nap

The last major surprise of the study was that the quiescence that Pseudomonas infection induces in worms is not the same as other forms of sleepiness that show up in other contexts, such as after satiety or heat stress. In those cases, worms don’t wake easily (with a little poke), but amid infection their quiescence was readily reversible. It seemed more like lethargy than sleep. Using the lab’s ability image all neural activity during behavior, Pradhan and Madan discerned that a neuron called ASI was particularly active during the bouts of lethargy. That observation solidified further when they showed that ASI’s secretion of the peptide DAF-7 was required for the quiescence to emerge in infected animals.

In all, the study showed that the worms repurpose and reconfigure — sometimes to the point of completely reversing — the functions of neurons and peptides to mount an adaptive response to infection, versus a different problem like stress. The results therefore shed light on what has been a tricky question to resolve. How do brains use their repertoire of cells, circuits, and neuromodulators to deal with what life hands them? At least part of the answer seems to be by reshuffling existing components, rather than creating unique ones for each situation.

“The states of stress, satiety, and infection are not induced by unique sets of neuromodulators," the authors wrote in their paper. "Instead, one larger set of neuromodulators may be deployed from different sources and in different combinations to specify these different internal states.”

In addition to Pradhan, Madan, and Flavell, the paper’s other authors are Di Kang, Eric Bueno, Adam Atanas, Talya Kramer, Ugur Dag, Jessica Lage, Matthew Gomes, Alicia Kun-Yang Lu, and Jungyeon Park.

Support for the research came from the the Picower Institute, the Freedom Together Foundation, the K. Lisa Yang Brain-Body Center, and the Yang Tan Collective at MIT; the National Institutes of Health; the McKnight Foundation; the Alfred P. Sloan Foundation; and the Howard Hughes Medical Institute.

Will the vegetables of the future be fortified using tiny needles?

MIT Latest News - Tue, 04/29/2025 - 12:20pm

When farmers apply pesticides to their crops, 30 to 50 percent of the chemicals end up in the air or soil instead of on the plants. Now, a team of researchers from MIT and Singapore has developed a much more precise way to deliver substances to plants: tiny needles made of silk.

In a study published today in Nature Nanotechnology, the researchers developed a way to produce large amounts of these hollow silk microneedles. They used them to inject agrochemicals and nutrients into plants, and to monitor their health.

“There’s a big need to make agriculture more efficient,” says Benedetto Marelli, the study’s senior author and an associate professor of civil and environmental engineering at MIT. “Agrochemicals are important for supporting our food system, but they’re also expensive and bring environmental side effects, so there’s a big need to deliver them precisely.”

Yunteng Cao PhD ’22, currently a postdoc Yale University, and Doyoon Kim, a former postdoc in the Marelli lab, led the study, which included a collaboration with the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group at the Singapore-MIT Alliance for Research and Technology (SMART).

In demonstrations, the team used the technique to give plants iron to treat a disease known as chlorosis, and to add vitamin B12 to tomato plants to make them more nutritious. The researchers also showed the microneedles could be used to monitor the quality of fluids flowing into plants and to detect when the surrounding soil contained heavy metals.

Overall, the researchers believe the microneedles could serve as a new kind of plant interface for real-time health monitoring and biofortification.

“These microneedles could be a tool for plant scientists so they can understand more about plant health and how they grow,” Marelli says. “But they can also be used to add value to crops, making them more resilient and possibly even increasing yields.”

The inner workings of plants

Accessing the inner tissues of living plants requires scientists to get through the plants’ waxy skin without causing too much stress. In previous work, the researchers used silk-based microneedles to deliver agrochemicals to plants in lab environments and to detect pH changes in living plants. But these initial efforts involved small payloads, limiting their applications in commercial agriculture.

“Microneedles were originally developed for the delivery of vaccines or other drugs in humans,” Marelli explains. “Now we’ve adapted it so that the technology can work with plants, but initially we could not deliver sufficient doses of agrochemicals and nutrients to mitigate stressors or enhance crop nutritional values.”

Hollow structures could increase the amount of chemicals microneedles can deliver, but Marelli says creating those structures at scale has historically required clean rooms and expensive facilities like the ones found inside the MIT.nano building.

For this study, Cao and Kim created a new way to manufacture hollow silk microneedles by combining silk fibroin protein with a salty solution inside tiny, cone-shaped molds. As water evaporated from the solution, the silk solidified into the mold while the salt forms crystalline structures inside the molds. When the salt was removed, it left behind in each needle a hollow structure or tiny pores, depending on the salt concentration and the separation of the organic and inorganic phases.

“It’s a pretty simple fabrication process. It can be done outside of a clean room — you could do it in your kitchen if you wanted,” Kim says. “It doesn’t require any expensive machinery.”

The researchers then tested their microneedles’ ability to deliver iron to iron-deficient tomato plants, which can cause a disease known as chlorosis. Chlorosis can decrease yields, but treating it by spraying crops is inefficient and can have environmental side effects. The researchers showed that their hollow microneedles could be used for the sustained delivery of iron without harming the plants.

The researchers also showed their microneedles could be used to fortify crops while they grow. Historically, crop fortification efforts have focused on minerals like zinc or iron, with vitamins only added after the food is harvested.

In each case, the researchers applied the microneedles to the stalks of plants by hand, but Marelli envisions equipping autonomous vehicles and other equipment already used in farms to automate and scale the process.

As part of the study, the researchers used microneedles to deliver vitamin B12, which is primarily found naturally in animal products, into the stalks of growing tomatoes, showing that vitamin B12 moved into the tomato fruits before harvest. The researchers propose their method could be used to fortify more plants with the vitamin.

Co-author Daisuke Urano, a plant scientist with DiSTAP, explains that “through a comprehensive assessment, we showed minimal adverse effects from microneedle injections in plants, with no observed short- or long-term negative impacts.”

“This new delivery mechanism opens up a lot of potential applications, so we wanted to do something nobody had done before,” Marelli explains.

Finally, the researchers explored the use of their microneedles to monitor the health of plants by studying tomatoes growing in hydroponic solutions contaminated with cadmium, a toxic metal commonly found in farms close to industrial and mining sites. They showed their microneedles absorbed the toxin within 15 minutes of being injected into the tomato stalks, offering a path to rapid detection.

Current advanced techniques for monitoring plant health, such as colorimetric and hyperspectral lead analyses, can only detect problems after plants growth is already being stunted. Other methods, such as sap sampling, can be too time-consuming.

Microneedles, in contrast, could be used to more easily collect sap for ongoing chemical analysis. For instance, the researchers showed they could monitor cadmium levels in tomatoes over the course of 18 hours.

A new platform for farming

The researchers believe the microneedles could be used to complement existing agricultural practices like spraying. The researchers also note the technology has applications beyond agriculture, such as in biomedical engineering.

“This new polymeric microneedle fabrication technique may also benefit research in microneedle-mediated transdermal and intradermal drug delivery and health monitoring,” Cao says.

For now, though, Marelli believes the microneedles offer a path to more precise, sustainable agriculture practices.

“We want to maximize the growth of plants without negatively affecting the health of the farm or the biodiversity of surrounding ecosystems,” Marelli says. “There shouldn’t be a trade-off between the agriculture industry and the environment. They should work together.”

This work was supported, in part, by the U.S. Office of Naval Research, the U.S. National Science Foundation, SMART, the National Research Foundation of Singapore, and the Singapore Prime Minister’s Office.

Applying Security Engineering to Prompt Injection Security

Schneier on Security - Tue, 04/29/2025 - 7:03am

This seems like an important advance in LLM security against prompt injection:

Google DeepMind has unveiled CaMeL (CApabilities for MachinE Learning), a new approach to stopping prompt-injection attacks that abandons the failed strategy of having AI models police themselves. Instead, CaMeL treats language models as fundamentally untrusted components within a secure software framework, creating clear boundaries between user commands and potentially malicious content.

[…]

To understand CaMeL, you need to understand that prompt injections happen when AI systems can’t distinguish between legitimate user commands and malicious instructions hidden in content they’re processing...

Trump dismisses scientists writing the National Climate Assessment

ClimateWire News - Tue, 04/29/2025 - 6:31am
The move plunges the congressionally mandated report into disarray and raises questions about whether the president will fill the void with pseudoscience.

Appeals court maintains green bank funding freeze

ClimateWire News - Tue, 04/29/2025 - 6:27am
Climate nonprofits that say they are about to go out of business will have to wait as the court considers whether EPA can terminate $20 billion in awards.

FEMA cleared of punishing pro-Trump hurricane victims

ClimateWire News - Tue, 04/29/2025 - 6:25am
A recent investigation found "no evidence" that FEMA under Joe Biden deliberately avoided helping homes in Florida that backed Donald Trump.

Trump names 13 officials to FEMA review council

ClimateWire News - Tue, 04/29/2025 - 6:24am
They include a veteran FEMA administrator and emergency management leaders in Florida and Texas.

West Virginia governor signs bill allowing carbon storage under parks

ClimateWire News - Tue, 04/29/2025 - 6:20am
The measure renewed concerns among carbon capture critics about the potential for CO2 leaks.

New LEED building rules focus on climate disasters

ClimateWire News - Tue, 04/29/2025 - 6:20am
The U.S. Green Building Council is updating its standards to account for rising seas and other effects of higher temperatures.

Keir Starmer bets on green UK patriotism to beat fossil fuels — and Farage

ClimateWire News - Tue, 04/29/2025 - 6:19am
The U.K. government wants to “take back control” of energy supply — but is it swapping one dependence for another?

Startups turn unconventional ingredients into butter and oil

ClimateWire News - Tue, 04/29/2025 - 6:18am
They are tapping everything from fungus to sawdust to make more environmentally friendly fats and oils.

Coconuts get pricier as poor weather drives global shortage

ClimateWire News - Tue, 04/29/2025 - 6:18am
Some producing countries like the Philippines and Indonesia are considering export restrictions, while consumers are being urged to switch to alternatives.

At the Venice Biennale, design through flexible thinking

MIT Latest News - Tue, 04/29/2025 - 12:00am

When the Venice Biennale’s 19th International Architecture Exhibition launches on May 10, its guiding theme will be applying nimble, flexible intelligence to a demanding world — an ongoing focus of its curator, MIT faculty member Carlo Ratti.

The Biennale is the world’s most renowned exhibition of its kind, an international event whose subject matter shifts over time, with a new curator providing new focus every two years. This year, the Biennale’s formal theme is “Intelligens,” the Latin word behind “intelligence,” in English, and “intelligenza,” in Italian — a word that evokes both the exhibition’s international scope and the many ways humans learn, adapt, and create.

“Our title is ‘Intelligens. Natural, artificial, collective,’” notes Ratti, who is a professor of the practice of urban technologies and planning in the MIT School of Architecture and Planning. “One key point is how we can go beyond what people normally think about intelligence, whether in people or AI. In the built environment we deal with many types of feedback and need to leverage all types of intelligence to collect and use it all.”

That applies to the subject of climate change, as adaptation is an ongoing focal point for the design community, whether facing the need to rework structures or to develop new, resilient designs for cities and regions.

“I would emphasize how eager architects are today to play a big role in addressing the big crises we face on the planet we live in,” Ratti says. “Architecture is the only discipline to bring everybody together, because it means rethinking the built environment, the places we all live.”

He adds: “If you think about the fires in Los Angeles, or the floods in Valencia or Bangladesh, or the drought in Sicily, these are cases where architecture and design need to apply feedback and use intelligence.”

Not just sharing design, but creating it

The Venice Biennale is the leading event of its kind globally and one of the earliest: It started with art exhibitions in 1895 and later added biannual shows focused on other facets of culture. Since 1980, the Biennale of Architecture was held every two years, until the 2020 exhibition — curated by MIT’s Hashim Sarkis — was rescheduled to 2021 due to the Covid-19 pandemic. It is now continuing in odd-numbered years.

After its May 10 opening, this year’s exhibition runs until Nov. 23.

Ratti is a wide-ranging scholar, designer, and writer, and the long-running director of MIT’s Senseable City Lab, which has been on the leading edge of using data to understand cities as living systems.

Additionally, Ratti is a founding partner of the international design firm Carlo Ratti Associati. He graduated from the Politecnico di Torino and the École Nationale des Ponts et Chaussées in Paris, then earned his MPhil and PhD at Cambridge University. He has authored and co-authored hundeds of publications, including the books “Atlas of the Senseable City” (2023) and “The City of Tomorrow” (2016). Ratti’s work has been exhibited at the Venice Biennale, the Design Museum in Barcelona, the Science Museum in London, and the Museum of Modern Art in New York, among other venues.

In his role as curator of this year’s Biennale, Ratti adapted the traditional format to engage with some of the leading questions design faces. Ratti and the organizers created multiple forums to gather feedback about the exhibition’s possibilities, sifting through responses during the planning process.

Ratti has also publicly called this year’s Biennale a “living lab,” not just an exhibition, in accordance with the idea of learning from feedback and developing designs in response.

Back in 1895, Ratti notes, the Biennale was principally “a place to share existing knowledge, with artists and architectures coming together every two years. Today, and for a few decades, you can find almost anything in architecture and art immediately online. I think Biennales can not only be places where you share existing knowledge, but places where you create new knowledge.”

At this moment, he emphasizes, that will often mean listening to nature as we grapple with climate solutions. It also implies recognizing that nature itself inevitably responds to inputs, too.

In this vein, Ratti says, “Remember what the great architect Carlo Scarpa once said: ‘Between a tree and a house, choose the tree.’ I see that as a powerful call to learn from nature — a vast lab of trial and error, guided by feedback loops. Too often in the 20th century, architects believed they had the solution and simply needed to scale it up. The results? Frequently disastrous. Especially now, when adaptability is everything, I believe in a different approach: experimentation, feedback, iteration. That’s the spirit I hope defines this year’s Biennale.”

An MIT touch

This year, MIT will again have a robust presence at the Biennale, even beyond Ratti’s presence as curator. In the first place, he emphasizes, there is a strong team organizing the Biennale. That includes MIT graduate student Claire Gorman, who has taken a year out of her studies to serve as principal assistant to the Biennale curator.

Many of the Biennale’s projects, Gorman observes, “align ecology, technology, and culture in stunning illustrations of the fact that intelligence emerges from the complex behaviors of many parts working together. Visitors to the exhibition will discover robots and artisans collaborating alongside algae, 3D printers, ancient building practices, and new materials. … One of the strengths of the exhibition is that it includes participants who approach similar topics from different points of view.”

Overall, Gorman adds, “Our hope is that visitors will come away from the exhibition with a sense of optimism about the capacity of design fields to unite many forms of expertise.”

Numerous other Institute faculty and researchers are represented as well. For instance, Daniela Rus, head of MIT’s Computer Science and Artificial Intelligence Lab (CSAIL), has helped design an installation about using robotics in the restoration of ancient structures. And famed MIT computer scientist Tim Berners-Lee, creator of the World Wide Web, is participating in a Biennale event on intelligence.

“In choosing ‘Intelligens’ as the Venice Biennale theme, Carlo Ratti recognizes that our moment requires a holistic understanding of how different forms of intelligence — from social and ecological to computational and spatial — converge to shape our built environment,” Rus says. “The Biennale offers a timely platform to explore how architecture can mediate between these intelligences, creating buildings and cities that think with and for us.”

Even as the Biennale runs, there is also a separate exhibit in Venice showcasing MIT work in architecture and design. Running from May 10 through Nov. 23, at the Palazzo Diedo, the show, “The Next Earth: Computation, Crisis, Cosmology,” features the work of 40 faculty members in MIT’s Department of Architecture, along with entries from the think tank Antikythera.

Meanwhile, for the Biennale itself, the main exhibition hall, the Arsenale, is open, but other event spaces are being renovated. That means the organizers are using additional spaces in the city of Venice this year to showcase cutting-edge design work and installations.

“We’re turning Venice into a living lab — taking the Biennale beyond its usual borders,” Ratti says. “But there’s a bigger picture: Venice may be the world’s most fragile city, caught between rising seas and the crush of mass tourism. That’s why it could become a true laboratory for the future. Venice today could be a glimpse of the world tomorrow.” 

Ambiguity of early warning signals for climate tipping points

Nature Climate Change - Tue, 04/29/2025 - 12:00am

Nature Climate Change, Published online: 29 April 2025; doi:10.1038/s41558-025-02328-8

It has been argued that parts of the climate system can experience rapid changes and that such tipping can be anticipated by early warning signals. Here the authors discuss the limitations of such indicators and common pitfalls in their application.

Congress Passes TAKE IT DOWN Act Despite Major Flaws

EFF: Updates - Mon, 04/28/2025 - 7:26pm

Today the U.S. House of Representatives passed the TAKE IT DOWN Act, giving the powerful a dangerous new route to manipulate platforms into removing lawful speech that they simply don't like. President Trump himself has said that he would use the law to censor his critics. The bill passed the Senate in February, and it now heads to the president's desk. 

The takedown provision in TAKE IT DOWN applies to a much broader category of content—potentially any images involving intimate or sexual content—than the narrower NCII definitions found elsewhere in the bill. The takedown provision also lacks critical safeguards against frivolous or bad-faith takedown requests. Services will rely on automated filters, which are infamously blunt tools. They frequently flag legal content, from fair-use commentary to news reporting. The law’s tight time frame requires that apps and websites remove speech within 48 hours, rarely enough time to verify whether the speech is actually illegal. As a result, online service providers, particularly smaller ones, will likely choose to avoid the onerous legal risk by simply depublishing the speech rather than even attempting to verify it.

Congress is using the wrong approach to helping people whose intimate images are shared without their consent. TAKE IT DOWN pressures platforms to actively monitor speech, including speech that is presently encrypted. The law thus presents a huge threat to security and privacy online. While the bill is meant to address a serious problem, good intentions alone are not enough to make good policy. Lawmakers should be strengthening and enforcing existing legal protections for victims, rather than inventing new takedown regimes that are ripe for abuse. 

Merging design and computer science in creative ways

MIT Latest News - Mon, 04/28/2025 - 4:55pm

The speed with which new technologies hit the market is nothing compared to the speed with which talented researchers find creative ways to use them, train them, even turn them into things we can’t live without. One such researcher is MIT MAD Fellow Alexander Htet Kyaw, a graduate student pursuing dual master’s degrees in architectural studies in computation and in electrical engineering and computer science.

Kyaw takes technologies like artificial intelligence, augmented reality, and robotics, and combines them with gesture, speech, and object recognition to create human-AI workflows that have the potential to interact with our built environment, change how we shop, design complex structures, and make physical things.

One of his latest innovations is Curator AI, for which he and his MIT graduate student partners took first prize — $26,000 in OpenAI products and cash — at the MIT AI Conference’s AI Build: Generative Voice AI Solutions, a weeklong hackathon at MIT with final presentations held last fall in New York City. Working with Kyaw were Richa Gupta (architecture) and Bradley Bunch, Nidhish Sagar, and Michael Won — all from the MIT Department of Electrical Engineering and Computer Science (EECS).

Curator AI is designed to streamline online furniture shopping by providing context-aware product recommendations using AI and AR. The platform uses AR to take the dimensions of a room with locations of windows, doors, and existing furniture. Users can then speak to the software to describe what new furnishings they want, and the system will use a vision-language AI model to search for and display various options that match both the user’s prompts and the room’s visual characteristics.

“Shoppers can choose from the suggested options, visualize products in AR, and use natural language to ask for modifications to the search, making the furniture selection process more intuitive, efficient, and personalized,” Kyaw says. “The problem we’re trying to solve is that most people don’t know where to start when furnishing a room, so we developed Curator AI to provide smart, contextual recommendations based on what your room looks like.” Although Curator AI was developed for furniture shopping, it could be expanded for use in other markets.

Another example of Kyaw’s work is Estimate, a product that he and three other graduate students created during the MIT Sloan Product Tech Conference’s hackathon in March 2024. The focus of that competition was to help small businesses; Kyaw and team decided to base their work on a painting company in Cambridge that employs 10 people. Estimate uses AR and an object-recognition AI technology to take the exact measurements of a room and generate a detailed cost estimate for a renovation and/or paint job. It also leverages generative AI to display images of the room or rooms as they might look like after painting or renovating, and generates an invoice once the project is complete.

The team won that hackathon and $5,000 in cash. Kyaw’s teammates were Guillaume Allegre, May Khine, and Anna Mathy, all of whom graduated from MIT in 2024 with master’s degrees in business analytics.

In April, Kyaw will give a TedX talk at his alma mater, Cornell University, in which he’ll describe Curator AI, Estimate, and other projects that use AI, AR, and robotics to design and build things.

One of these projects is Unlog, for which Kyaw connected AR with gesture recognition to build a software that takes input from the touch of a fingertip on the surface of a material, or even in the air, to map the dimensions of building components. That’s how Unlog — a towering art sculpture made from ash logs that stands on the Cornell campus — came about.

Unlog represents the possibility that structures can be built directly from a whole log, rather than having the log travel to a lumber mill to be turned into planks or two-by-fours, then shipped to a wholesaler or retailer. It’s a good representation of Kyaw’s desire to use building materials in a more sustainable way. A paper on this work, “Gestural Recognition for Feedback-Based Mixed Reality Fabrication a Case Study of the UnLog Tower,” was published by Kyaw, Leslie Lok, Lawson Spencer, and Sasa Zivkovic in the Proceedings of the 5th International Conference on Computational Design and Robotic Fabrication, January 2024.

Another system Kyaw developed integrates physics simulation, gesture recognition, and AR to design active bending structures built with bamboo poles. Gesture recognition allows users to manipulate digital bamboo modules in AR, and the physics simulation is integrated to visualize how the bamboo bends and where to attach the bamboo poles in ways that create a stable structure. This work appeared in the Proceedings of the 41st Education and Research in Computer Aided Architectural Design in Europe, August 2023, as “Active Bending in Physics-Based Mixed Reality: The Design and Fabrication of a Reconfigurable Modular Bamboo System.”

Kyaw pitched a similar idea using bamboo modules to create deployable structures last year to MITdesignX, an MIT MAD program that selects promising startups and provides coaching and funding to launch them. Kyaw has since founded BendShelters to build the prefabricated, modular bamboo shelters and community spaces for refugees and displaced persons in Myanmar, his home country.

“Where I grew up, in Myanmar, I’ve seen a lot of day-to-day effects of climate change and extreme poverty,” Kyaw says. “There’s a huge refugee crisis in the country, and I want to think about how I can contribute back to my community.”

His work with BendShelters has been recognized by MIT Sandbox, PKG Social Innovation Challenge, and the Amazon Robotics’ Prize for Social Good.

At MIT, Kyaw is collaborating with Professor Neil Gershenfeld, director of the Center for Bits and Atoms, and PhD student Miana Smith to use speech recognition, 3D generative AI, and robotic arms to create a workflow that can build objects in an accessible, on-demand, and sustainable way. Kyaw holds bachelor’s degrees in architecture and computer science from Cornell. Last year, he was awarded an SJA Fellowship from the Steve Jobs Archive, which provides funding for projects at the intersection of technology and the arts. 

“I enjoy exploring different kinds of technologies to design and make things,” Kyaw says. “Being part of MAD has made me think about how all my work connects, and helped clarify my intentions. My research vision is to design and develop systems and products that enable natural interactions between humans, machines, and the world around us.” 

New chip tests cooling solutions for stacked microelectronics

MIT Latest News - Mon, 04/28/2025 - 4:40pm

As demand grows for more powerful and efficient microelectronics systems, industry is turning to 3D integration — stacking chips on top of each other. This vertically layered architecture could allow high-performance processors, like those used for artificial intelligence, to be packaged closely with other highly specialized chips for communication or imaging. But technologists everywhere face a major challenge: how to prevent these stacks from overheating.

Now, MIT Lincoln Laboratory has developed a specialized chip to test and validate cooling solutions for packaged chip stacks. The chip dissipates extremely high power, mimicking high-performance logic chips, to generate heat through the silicon layer and in localized hot spots. Then, as cooling technologies are applied to the packaged stack, the chip measures temperature changes. When sandwiched in a stack, the chip will allow researchers to study how heat moves through stack layers and benchmark progress in keeping them cool. 

"If you have just a single chip, you can cool it from above or below. But if you start stacking several chips on top of each other, the heat has nowhere to escape. No cooling methods exist today that allow industry to stack multiples of these really high-performance chips," says Chenson Chen, who led the development of the chip with Ryan Keech, both of the laboratory’s Advanced Materials and Microsystems Group.

The benchmarking chip is now being used at HRL Laboratories, a research and development company co-owned by Boeing and General Motors, as they develop cooling systems for 3D heterogenous integrated (3DHI) systems. Heterogenous integration refers to the stacking of silicon chips with non-silicon chips, such as III-V semiconductors used in radio-frequency (RF) systems.   

"RF components can get very hot and run at very high powers — it adds an extra layer of complexity to 3D integration, which is why having this testing capability is so needed," Keech says.

The Defense Advanced Research Projects Agency (DARPA) funded the laboratory's development of the benchmarking chip to support the HRL program. All of this research stems from DARPA's Miniature Integrated Thermal Management Systems for 3D Heterogeneous Integration (Minitherms3D) program.

For the Department of Defense, 3DHI opens new opportunities for critical systems. For example, 3DHI could increase the range of radar and communication systems, enable the integration of advanced sensors on small platforms such as uncrewed aerial vehicles, or allow artificial intelligence data to be processed directly in fielded systems instead of remote data centers.

The test chip was developed through collaboration between circuit designers, electrical testing experts, and technicians in the laboratory's Microelectronics Laboratory. 

The chip serves two functions: generating heat and sensing temperature. To generate heat, the team designed circuits that could operate at very high power densities, in the kilowatts-per-square-centimeter range, comparable to the projected power demands of high-performance chips today and into the future. They also replicated the layout of circuits in those chips, allowing the test chip to serve as a realistic stand-in. 

"We adapted our existing silicon technology to essentially design chip-scale heaters," says Chen, who brings years of complex integration and chip design experience to the program. In the 2000s, he helped the laboratory pioneer the fabrication of two- and three-tier integrated circuits, leading early development of 3D integration.

The chip's heaters emulate both the background levels of heat within a stack and localized hot spots. Hot spots often occur in the most buried and inaccessible areas of a chip stack, making it difficult for 3D-chip developers to assess whether cooling schemes, such as microchannels delivering cold liquid, are reaching those spots and are effective enough.

That's where temperature-sensing elements come in. The chip is distributed with what Chen likens to "tiny thermometers" that read out the temperature in multiple locations across the chip as coolants are applied.

These thermometers are actually diodes, or switches that allow current to flow through a circuit as voltage is applied. As the diodes heat up, the current-to-voltage ratio changes. "We're able to check a diode's performance and know that it's 200 degrees C, or 100 degrees C, or 50 degrees C, for example," Keech says. "We thought creatively about how devices could fail from overheating, and then used those same properties to design useful measurement tools."

Chen and Keech — along with other design, fabrication, and electrical test experts across the laboratory — are now collaborating with HRL Laboratories researchers as they couple the chip with novel cooling technologies, and integrate those technologies into a 3DHI stack that could boost RF signal power. "We need to cool the heat equivalent of more than 190 laptop CPUs [central processing units], but in the size of a single CPU package," Christopher Roper, co-principal investigator at HRL, said in a recent press release announcing their program.

According to Keech, the rapid timeline for delivering the chip was a challenge overcome by teamwork through all phases of the chip's design, fabrication, test, and 3D heterogenous integration.

"Stacked architectures are considered the next frontier for microelectronics," he says. "We want to help the U.S. government get ahead in finding ways to integrate them effectively and enable the highest performance possible for these chips."

The laboratory team presented this work at the annual Government Microcircuit Applications and Critical Technology Conference (GOMACTech), held March 17-20.

Pages