Feed aggregator
Get ready for years of killer heat, top forecasters warn
Unlocking genebanks for climate adaptation
Nature Climate Change, Published online: 29 May 2025; doi:10.1038/s41558-025-02336-8
Genebanks hold the key to crop resilience and adaptation, yet their potential remains underutilized. Now, a study demonstrates how merging genomic and environmental data can unveil the best-suited germplasm for future climates.Prioritizing parents from global genebanks to breed climate-resilient crops
Nature Climate Change, Published online: 29 May 2025; doi:10.1038/s41558-025-02333-x
The authors consider the future climate resilience and genomic adaptive capacity of the globally important crop sorghum using 1,937 global accessions. They identify the best potential parents and geographies for crop improvements, and underscore the need for better accessibility of plant resources.Rationale engineering generates a compact new tool for gene therapy
Scientists at the McGovern Institute for Brain Research at MIT and the Broad Institute of MIT and Harvard have re-engineered a compact RNA-guided enzyme they found in bacteria into an efficient, programmable editor of human DNA.
The protein they created, called NovaIscB, can be adapted to make precise changes to the genetic code, modulate the activity of specific genes, or carry out other editing tasks. Because its small size simplifies delivery to cells, NovaIscB’s developers say it is a promising candidate for developing gene therapies to treat or prevent disease.
The study was led by Feng Zhang, the James and Patricia Poitras Professor of Neuroscience at MIT who is also an investigator at the McGovern Institute and the Howard Hughes Medical Institute, and a core member of the Broad Institute. Zhang and his team reported their open-access work this month in the journal Nature Biotechnology.
NovaIscB is derived from a bacterial DNA cutter that belongs to a family of proteins called IscBs, which Zhang’s lab discovered in 2021. IscBs are a type of OMEGA system, the evolutionary ancestors to Cas9, which is part of the bacterial CRISPR system that Zhang and others have developed into powerful genome-editing tools. Like Cas9, IscB enzymes cut DNA at sites specified by an RNA guide. By reprogramming that guide, researchers can redirect the enzymes to target sequences of their choosing.
IscBs had caught the team’s attention not only because they share key features of CRISPR’s DNA-cutting Cas9, but also because they are a third of its size. That would be an advantage for potential gene therapies: compact tools are easier to deliver to cells, and with a small enzyme, researchers would have more flexibility to tinker, potentially adding new functionalities without creating tools that were too bulky for clinical use.
From their initial studies of IscBs, researchers in Zhang’s lab knew that some members of the family could cut DNA targets in human cells. None of the bacterial proteins worked well enough to be deployed therapeutically, however: the team would have to modify an IscB to ensure it could edit targets in human cells efficiently without disturbing the rest of the genome.
To begin that engineering process, Soumya Kannan, a graduate student in Zhang’s lab who is now a junior fellow at the Harvard Society of Fellows, and postdoc Shiyou Zhu first searched for an IscB that would make good starting point. They tested nearly 400 different IscB enzymes that can be found in bacteria. Ten were capable of editing DNA in human cells.
Even the most active of those would need to be enhanced to make it a useful genome editing tool. The challenge would be increasing the enzyme’s activity, but only at the sequences specified by its RNA guide. If the enzyme became more active, but indiscriminately so, it would cut DNA in unintended places. “The key is to balance the improvement of both activity and specificity at the same time,” explains Zhu.
Zhu notes that bacterial IscBs are directed to their target sequences by relatively short RNA guides, which makes it difficult to restrict the enzyme’s activity to a specific part of the genome. If an IscB could be engineered to accommodate a longer guide, it would be less likely to act on sequences beyond its intended target.
To optimize IscB for human genome editing, the team leveraged information that graduate student Han Altae-Tran, who is now a postdoc at the University of Washington, had learned about the diversity of bacterial IscBs and how they evolved. For instance, the researchers noted that IscBs that worked in human cells included a segment they called REC, which was absent in other IscBs. They suspected the enzyme might need that segment to interact with the DNA in human cells. When they took a closer look at the region, structural modeling suggested that by slightly expanding part of the protein, REC might also enable IscBs to recognize longer RNA guides.
Based on these observations, the team experimented with swapping in parts of REC domains from different IscBs and Cas9s, evaluating how each change impacted the protein’s function. Guided by their understanding of how IscBs and Cas9s interact with both DNA and their RNA guides, the researchers made additional changes, aiming to optimize both efficiency and specificity.
In the end, they generated a protein they called NovaIscB, which was over 100 times more active in human cells than the IscB they had started with, and that had demonstrated good specificity for its targets.
Kannan and Zhu constructed and screened hundreds of new IscBs before arriving at NovaIscB — and every change they made to the original protein was strategic. Their efforts were guided by their team’s knowledge of IscBs’s natural evolution, as well as predictions of how each alteration would impact the protein’s structure, made using an artificial intelligence tool called AlphaFold2. Compared to traditional methods of introducing random changes into a protein and screening for their effects, this rational engineering approach greatly accelerated the team’s ability to identify a protein with the features they were looking for.
The team demonstrated that NovaIscB is a good scaffold for a variety of genome editing tools. “It biochemically functions very similarly to Cas9, and that makes it easy to port over tools that were already optimized with the Cas9 scaffold,” Kannan says. With different modifications, the researchers used NovaIscB to replace specific letters of the DNA code in human cells and to change the activity of targeted genes.
Importantly, the NovaIscB-based tools are compact enough to be easily packaged inside a single adeno-associated virus (AAV) — the vector most commonly used to safely deliver gene therapy to patients. Because they are bulkier, tools developed using Cas9 can require a more complicated delivery strategy.
Demonstrating NovaIscB’s potential for therapeutic use, Zhang’s team created a tool called OMEGAoff that adds chemical markers to DNA to dial down the activity of specific genes. They programmed OMEGAoff to repress a gene involved in cholesterol regulation, then used AAV to deliver the system to the livers of mice, leading to lasting reductions in cholesterol levels in the animals’ blood.
The team expects that NovaIscB can be used to target genome editing tools to most human genes, and look forward to seeing how other labs deploy the new technology. They also hope others will adopt their evolution-guided approach to rational protein engineering. “Nature has such diversity, and its systems have different advantages and disadvantages,” Zhu says. “By learning about that natural diversity, we can make the systems we are trying to engineer better and better.”
This study was funded, in part, by the K. Lisa Yang and Hock E. Tan Center for Molecular Therapeutics at MIT, Broad Institute Programmable Therapeutics Gift Donors, Pershing Square Foundation, William Ackman, Neri Oxman, the Phillips family, and J. and P. Poitras.
An anomaly detection framework anyone can use
Sarah Alnegheimish’s research interests reside at the intersection of machine learning and systems engineering. Her objective: to make machine learning systems more accessible, transparent, and trustworthy.
Alnegheimish is a PhD student in Principal Research Scientist Kalyan Veeramachaneni’s Data-to-AI group in MIT’s Laboratory for Information and Decision Systems (LIDS). Here, she commits most of her energy to developing Orion, an open-source, user-friendly machine learning framework and time series library that is capable of detecting anomalies without supervision in large-scale industrial and operational settings.
Early influence
The daughter of a university professor and a teacher educator, she learned from an early age that knowledge was meant to be shared freely. “I think growing up in a home where education was highly valued is part of why I want to make machine learning tools accessible.” Alnegheimish’s own personal experience with open-source resources only increased her motivation. “I learned to view accessibility as the key to adoption. To strive for impact, new technology needs to be accessed and assessed by those who need it. That’s the whole purpose of doing open-source development.”
Alnegheimish earned her bachelor’s degree at King Saud University (KSU). “I was in the first cohort of computer science majors. Before this program was created, the only other available major in computing was IT [information technology].” Being a part of the first cohort was exciting, but it brought its own unique challenges. “All of the faculty were teaching new material. Succeeding required an independent learning experience. That’s when I first time came across MIT OpenCourseWare: as a resource to teach myself.”
Shortly after graduating, Alnegheimish became a researcher at the King Abdulaziz City for Science and Technology (KACST), Saudi Arabia’s national lab. Through the Center for Complex Engineering Systems (CCES) at KACST and MIT, she began conducting research with Veeramachaneni. When she applied to MIT for graduate school, his research group was her top choice.
Creating Orion
Alnegheimish’s master thesis focused on time series anomaly detection — the identification of unexpected behaviors or patterns in data, which can provide users crucial information. For example, unusual patterns in network traffic data can be a sign of cybersecurity threats, abnormal sensor readings in heavy machinery can predict potential future failures, and monitoring patient vital signs can help reduce health complications. It was through her master’s research that Alnegheimish first began designing Orion.
Orion uses statistical and machine learning-based models that are continuously logged and maintained. Users do not need to be machine learning experts to utilize the code. They can analyze signals, compare anomaly detection methods, and investigate anomalies in an end-to-end program. The framework, code, and datasets are all open-sourced.
“With open source, accessibility and transparency are directly achieved. You have unrestricted access to the code, where you can investigate how the model works through understanding the code. We have increased transparency with Orion: We label every step in the model and present it to the user.” Alnegheimish says that this transparency helps enable users to begin trusting the model before they ultimately see for themselves how reliable it is.
“We’re trying to take all these machine learning algorithms and put them in one place so anyone can use our models off-the-shelf,” she says. “It’s not just for the sponsors that we work with at MIT. It’s being used by a lot of public users. They come to the library, install it, and run it on their data. It’s proving itself to be a great source for people to find some of the latest methods for anomaly detection.”
Repurposing models for anomaly detection
In her PhD, Alnegheimish is further exploring innovative ways to do anomaly detection using Orion. “When I first started my research, all machine-learning models needed to be trained from scratch on your data. Now we’re in a time where we can use pre-trained models,” she says. Working with pre-trained models saves time and computational costs. The challenge, though, is that time series anomaly detection is a brand-new task for them. “In their original sense, these models have been trained to forecast, but not to find anomalies,” Alnegheimish says. “We’re pushing their boundaries through prompt-engineering, without any additional training.”
Because these models already capture the patterns of time-series data, Alnegheimish believes they already have everything they need to enable them to detect anomalies. So far, her current results support this theory. They don’t surpass the success rate of models that are independently trained on specific data, but she believes they will one day.
Accessible design
Alnegheimish talks at length about the efforts she’s gone through to make Orion more accessible. “Before I came to MIT, I used to think that the crucial part of research was to develop the machine learning model itself or improve on its current state. With time, I realized that the only way you can make your research accessible and adaptable for others is to develop systems that make them accessible. During my graduate studies, I’ve taken the approach of developing my models and systems in tandem.”
The key element to her system development was finding the right abstractions to work with her models. These abstractions provide universal representation for all models with simplified components. “Any model will have a sequence of steps to go from raw input to desired output. We’ve standardized the input and output, which allows the middle to be flexible and fluid. So far, all the models we’ve run have been able to retrofit into our abstractions.” The abstractions she uses have been stable and reliable for the last six years.
The value of simultaneously building systems and models can be seen in Alnegheimish’s work as a mentor. She had the opportunity to work with two master’s students earning their engineering degrees. “All I showed them was the system itself and the documentation of how to use it. Both students were able to develop their own models with the abstractions we’re conforming to. It reaffirmed that we’re taking the right path.”
Alnegheimish also investigated whether a large language model (LLM) could be used as a mediator between users and a system. The LLM agent she has implemented is able to connect to Orion without users needing to know the small details of how Orion works. “Think of ChatGPT. You have no idea what the model is behind it, but it’s very accessible to everyone.” For her software, users only know two commands: Fit and Detect. Fit allows users to train their model, while Detect enables them to detect anomalies.
“The ultimate goal of what I’ve tried to do is make AI more accessible to everyone,” she says. So far, Orion has reached over 120,000 downloads, and over a thousand users have marked the repository as one of their favorites on Github. “Traditionally, you used to measure the impact of research through citations and paper publications. Now you get real-time adoption through open source.”
MIT mechanical engineering course invites students to “build with biology”
MIT course 2.797/2.798 (Molecular Cellular and Tissue Biomechanics) teaches students about the role that mechanics plays in biology, with a focus on biomechanics and mechanobiology: “Two words that sound similar, but are actually very different,” says Ritu Raman, the Eugene Bell Career Development Professor of Tissue Engineering in the MIT Department of Mechanical Engineering.
Biomechanics, Raman explains, conveys the mechanical properties of biological materials, where mechanobiology teaches students how cells feel and respond to forces in their environment. “When students take this class, they're getting a really unique fusion of not only fundamentals of mechanics, but also emerging research in biomechanics and mechanobiology,” says Raman.
Raman and Peter So, professor of mechanical engineering, co-teach the course, which So says offers a concrete application of some of the basic theory. “We talk about some of the applications and why the fundamental concept is important.”
The pair recently revamped the curriculum to incorporate hands-on lab-learning through the campus BioMakers space and the Safety, Health, Environmental Discovery Lab (SHED) bioprinting makerspace. This updated approach invites students to “build with biology” and see how cells respond to forces in their environment in real time, and it was a change that was seemingly welcomed from the start, with the first offering yielding the course’s largest-ever enrollment.
“Many concepts in biomechanics and mechanobiology can be hard to conceptualize because they happen at length scales that we can't typically visualize,” Raman explains. “In the past, we've done our best to convey these ideas via pictures, videos, and equations. The lab component adds another dimension to our teaching methods. We hope that students seeing firsthand how living cells sense and respond to their environment helps the concepts sink in deeper and last longer in their memories.”
Makerspaces, which are located throughout the campus, offer tools and workspace for MIT community members to invent, prototype, and bring ideas to life. The Institute has over 40 design/build/project spaces that include facilities for 3D printing, glassblowing, wood and metal working, and more. The BioMakers space welcomes students engaged in hands-on bioengineering projects. SHED similarly leverages cutting-edge technologies across disciplines, including a new space focused on 3D bio-printing.
Kamakshi Subramanian, a cross-registered Wellesley College student, says she encountered a polymer model in a prior thermodynamics class, but wondered how she’d apply it. Taking this course gave her a new frame of reference. “I was like, ‘Why are we doing this?’ … and then I came here and I was like, ‘OK, thinking about entropy in this way is actually useful.’”
Raman says there’s a special kind of energy and excitement associated with being in a lab versus staying in the classroom. “It reminds me of going on a field trip when I was in elementary school,” she says, adding that seeing that energy in students during the course’s first run inspired the instructors to expand lab offerings even further in the second offering.
“[In addition to] one main lab on the biomechanics of muscle contraction, we have added a second lab where students visit the SHED makerspace to learn about 3D bio-printing,” she says. “We have also incorporated an optional hands-on component into the final project, [and] most students in the class are taking advantage of this extra lab time to try exciting curiosity-driven experiments at the intersection of biology and mechanics.”
Raman and So, who were joined in teaching the second iteration of the course this semester by professor of biological engineering Mark Bathe, say they hope to continue to build the amount of hands-on time incorporated into the class in the coming years.
Ayi Agboglo, a Harvard-MIT Health Sciences and Technology graduate student who is studying the physical properties of red blood cells relevant to sickle cell disease (SCD), says taking the course introduced him to studies where mathematical models extracted mechanical properties of red blood cell (RBC) membranes in the context of SCD.
“In SCD, deoxygenation causes rigid protein fibers to form within cells, altering their mechanical and physical properties,” he explains. “This field of work has largely informed my research which focuses on measuring the physical properties of RBCs (mass, volume, and density) in both oxygenated and deoxygenated states. These measurements aim to reveal patient-specific differences in fiber formation — the primary pathological event in SCD — potentially uncovering new therapeutic opportunities.”
Agboglo, who works in Professor Cullen Buie’s lab at MIT and John Higgins’ lab at MGH, says, “I left [the class] not only understanding more about molecular mechanics, but also understanding just fundamentals about thermodynamics and energy and things that I think will be useful as a scientist in general.”
In addition to lab and lecture time, 2.797/2.798 students also had the opportunity to work with the Museum of Science, Boston and generate open-source educational resources about the interplay between mechanics and biology. These resources are now available on the museum's website.
The Insidious Effort to Privatize Public Airwaves | EFFector 37.5
School is almost out for summer! You know what that means? Plenty of time to catch up on the latest digital rights news! Don't worry, though—EFF has you covered with our EFFector newsletter.
This edition of EFFector explains why efforts to privatize public airwaves would harm American TV viewers; goes over how KOSA is still a very bad censorship bill, especially for young people; and covers how Signal, WhatsApp, and other encrypted chat apps back up your conversations.
You can read the full newsletter here, and even get future editions directly to your inbox when you subscribe! Additionally, we've got an audio edition of EFFector on the Internet Archive, or you can view it by clicking the button below:
EFFECTOR 37.5 - The Insidious Effort to Privatize Public Airwaves
Since 1990 EFF has published EFFector to help keep readers on the bleeding edge of their digital rights. We know that the intersection of technology, civil liberties, human rights, and the law can be complicated, so EFFector is a great way to stay on top of things. The newsletter is chock full of links to updates, announcements, blog posts, and other stories to help keep readers—and listeners—up to date on the movement to protect online privacy and free expression.
Thank you to the supporters around the world who make our work possible! If you're not a member yet, join EFF today to help us fight for a brighter digital future.
A high-fat diet sets off metabolic dysfunction in cells, leading to weight gain
Consuming a high-fat diet can lead to a variety of health problems — not only weight gain but also an increased risk of diabetes and other chronic diseases.
At the cellular level, hundreds of changes take place in response to a high-fat diet. MIT researchers have now mapped out some of those changes, with a focus on metabolic enzyme dysregulation that is associated with weight gain.
Their study, conducted in mice, revealed that hundreds of enzymes involved in sugar, lipid, and protein metabolism are affected by a high-fat diet, and that these disruptions lead to an increase in insulin resistance and an accumulation of damaging molecules called reactive oxygen species. These effects were more pronounced in males than females.
The researchers also showed that most of the damage could be reversed by giving the mice an antioxidant along with their high-fat diet.
“Under metabolic stress conditions, enzymes can be affected to produce a more harmful state than what was initially there,” says Tigist Tamir, a former MIT postdoc. “Then what we’ve shown with the antioxidant study is that you can bring them to a different state that is less dysfunctional.”
Tamir, who is now an assistant professor of biochemistry and biophysics at the University of North Carolina at Chapel Hill School of Medicine, is the lead author of the new study, which appears today in Molecular Cell. Forest White, the Ned C. and Janet C. Rice Professor of Biological Engineering and a member of the Koch Institute for Integrative Cancer Research at MIT, is the senior author of the paper.
Metabolic networks
In previous work, White’s lab has found that a high-fat diet stimulates cells to turn on many of the same signaling pathways that are linked to chronic stress. In the new study, the researchers wanted to explore the role of enzyme phosphorylation in those responses.
Phosphorylation, or the addition of a phosphate group, can turn enzyme activity on or off. This process, which is controlled by enzymes called kinases, gives cells a way to quickly respond to environmental conditions by fine-tuning the activity of existing enzymes within the cell.
Many enzymes involved in metabolism — the conversion of food into the building blocks of key molecules such as proteins, lipids, and nucleic acids — are known to undergo phosphorylation.
The researchers began by analyzing databases of human enzymes that can be phosphorylated, focusing on enzymes involved in metabolism. They found that many of the metabolic enzymes that undergo phosphorylation belong to a class called oxidoreductases, which transfer electrons from one molecule to another. Such enzymes are key to metabolic reactions such as glycolysis — the breakdown of glucose into a smaller molecule known as pyruvate.
Among the hundreds of enzymes the researchers identified are IDH1, which is involved in breaking down sugar to generate energy, and AKR1C1, which is required for metabolizing fatty acids. The researchers also found that many phosphorylated enzymes are important for the management of reactive oxygen species, which are necessary for many cell functions but can be harmful if too many of them accumulate in a cell.
Phosphorylation of these enzymes can lead them to become either more or less active, as they work together to respond to the intake of food. Most of the metabolic enzymes identified in this study are phosphorylated on sites found in regions of the enzyme that are important for binding to the molecules that they act upon or for forming dimers — pairs of proteins that join together to form a functional enzyme.
“Tigist’s work has really shown categorically the importance of phosphorylation in controlling the flux through metabolic networks. It’s fundamental knowledge that emerges from this systemic study that she’s done, and it’s something that is not classically captured in the biochemistry textbooks,” White says.
Out of balance
To explore these effects in an animal model, the researchers compared two groups of mice, one that received a high-fat diet and one that consumed a normal diet. They found that overall, phosphorylation of metabolic enzymes led to a dysfunctional state in which cells were in redox imbalance, meaning that their cells were producing more reactive oxygen species than they could neutralize. These mice also became overweight and developed insulin resistance.
“In the context of continued high fat diet, what we see is a gradual drift away from redox homeostasis towards a more disease-like setting,” White says.
These effects were much more pronounced in male mice than female mice. Female mice were better able to compensate for the high fat diet by activating pathways involved in processing fat and metabolizing it for other uses, the researchers found.
“One of the things we learned is that the overall systemic effect of these phosphorylation events led to, especially in males, an increased imbalance in redox homeostasis. They were expressing a lot more stress and a lot more of the metabolic dysfunction phenotype compared to females,” Tamir says.
The researchers also found that if they gave mice who were on a high-fat diet an antioxidant called BHA, many of these effects were reversed. These mice showed a significant decrease in weight gain and did not become prediabetic, unlike the other mice fed a high-fat diet.
It appears that the antioxidant treatment leads cells back into a more balanced state, with fewer reactive oxygen species, the researchers say. Additionally, metabolic enzymes showed a systemic rewiring and changed state of phosphorylation in those mice.
“They’re experiencing a lot of metabolic dysfunction, but if you co-administer something that counters that, then they have enough reserve to maintain some sort of normalcy,” Tamir says. “The study suggests that there is something biochemically happening in cells to bring them to a different state — not a normal state, just a different state in which now, at the tissue and organism levels, the mice are healthier.”
In her new lab at the University of North Carolina, Tamir now plans to further explore whether antioxidant treatment could be an effective way to prevent or treat obesity-associated metabolic dysfunction, and what the optimal timing of such a treatment would be.
The research was funded in part by the Burroughs Wellcome Fund, the National Cancer Institute, the National Institutes of Health, the Ludwig Center at MIT, and the MIT Center for Precision Cancer Medicine.
$20 million gift supports theoretical physics research and education at MIT
A $20 million gift from the Leinweber Foundation, in addition to a $5 million commitment from the MIT School of Science, will support theoretical physics research and education at MIT.
Leinweber Foundation gifts to five institutions, totaling $90 million, will establish the newly renamed MIT Center for Theoretical Physics – A Leinweber Institute within the Department of Physics, affiliated with the Laboratory for Nuclear Science at the School of Science, as well as Leinweber Institutes for Theoretical Physics at three other top research universities: the University of Michigan, the University of California at Berkeley, and the University of Chicago, as well as a Leinweber Forum for Theoretical and Quantum Physics at the Institute for Advanced Study.
“MIT has one of the strongest and broadest theory groups in the world,” says Professor Washington Taylor, the director of the newly funded center and a leading researcher in string theory and its connection to observable particle physics and cosmology.
“This landmark endowment from the Leinweber Foundation will enable us to support the best graduate students and postdoctoral researchers to develop their own independent research programs and to connect with other researchers in the Leinweber Institute network. By pledging to support this network and fundamental curiosity-driven science, Larry Leinweber and his family foundation have made a huge contribution to maintaining a thriving scientific enterprise in the United States in perpetuity.”
The Leinweber Foundation’s investment across five institutions — constituting the largest philanthropic commitment ever for theoretical physics research, according to the Science Philanthropy Alliance, a nonprofit organization that supports philanthropic support for science — will strengthen existing programs at each institution and foster collaboration across the universities. Recipient institutions will work both independently and collaboratively to explore foundational questions in theoretical physics. Each institute will continue to shape its own research focus and programs, while also committing to big-picture cross-institutional convenings around topics of shared interest. Moreover, each institute will have significantly more funding for graduate students and postdocs, including fellowship support for three to eight fully endowed Leinweber Physics Fellows at each institute.
“This gift is a commitment to America’s scientific future,” says Larry Leinweber, founder and president of the Leinweber Foundation. “Theoretical physics may seem abstract to many, but it is the tip of the spear for innovation. It fuels our understanding of how the world works and opens the door to new technologies that can shape society for generations. As someone who has had a lifelong fascination with theoretical physics, I hope this investment not only strengthens U.S. leadership in basic science, but also inspires curiosity, creativity, and groundbreaking discoveries for generations to come.”
The gift to MIT will create a postdoc program that, once fully funded, will initially provide support for up to six postdocs, with two selected per year for a three-year program. In addition, the gift will provide student financial support, including fellowship support, for up to six graduate students per year studying theoretical physics. The goal is to attract the top talent to the MIT Center for Theoretical Physics – A Leinweber Institute and support the ongoing research programs in a more robust way.
A portion of the funding will also provide support for visitors, seminars, and other scholarly activities of current postdocs, faculty, and students in theoretical physics, as well as helping with administrative support.
“Graduate students are the heart of our country’s scientific research programs. Support for their education to become the future leaders of the field is essential for the advancement of the discipline,” says Nergis Mavalvala, dean of the MIT School of Science and the Curtis (1963) and Kathleen Marble Professor of Astrophysics.
The Leinweber Foundation gift is the second significant gift for the center. “We are always grateful to Virgil Elings, whose generous gift helped make possible the space that houses the center,” says Deepto Chakrabarty, head of the Department of Physics. Elings PhD ’66, co-founder of Digital Instruments, which designed and sold scanning probe microscopes, made his gift more than 20 years ago to support a space for theoretical physicists to collaborate.
“Gifts like those from Larry Leinweber and Virgil Elings are critical, especially now in this time of uncertain funding from the federal government for support of fundamental scientific research carried out by our nation’s leading postdocs, research scientists, faculty and students,” adds Mavalvala.
Professor Tracy Slatyer, whose work is motivated by questions of fundamental particle physics — particularly the nature and interactions of dark matter — will be the subsequent director of the MIT Center for Theoretical Physics – A Leinweber Institute beginning this fall. Slatyer will join Mavalvala, Taylor, Chakrabarty, and the entirety of the theoretical physics community for a dedication ceremony planned for the near future.
The Leinweber Foundation was founded in 2015 by software entrepreneur Larry Leinweber, and has worked with the Science Philanthropy Alliance since 2021 to shape its philanthropic strategy. “It’s been a true pleasure to work with Larry and the Leinweber family over the past four years and to see their vision take shape,” says France Córdova, president of the Science Philanthropy Alliance. “Throughout his life, Larry has exemplified curiosity, intellectual openness, and a deep commitment to learning. This gift reflects those values, ensuring that generations of scientists will have the freedom to explore, to question, and to pursue ideas that could change how we understand the universe.”
Location Tracking App for Foreigners in Moscow
Russia is proposing a rule that all foreigners in Moscow install a tracking app on their phones.
Using a mobile application that all foreigners will have to install on their smartphones, the Russian state will receive the following information:
- Residence location
- Fingerprint
- Face photograph
- Real-time geo-location monitoring
This isn’t the first time we’ve seen this. Qatar did it in 2022 around the World Cup:
“After accepting the terms of these apps, moderators will have complete control of users’ devices,” he continued. “All personal content, the ability to edit it, share it, extract it as well as data from other apps on your device is in their hands. Moderators will even have the power to unlock users’ devices remotely.” ...
Montana lawmakers blunt group’s historic court win on climate
A quiet change by Biden led to an LA windfall in disaster loans
‘Death Star’ vessel arrives in US to help build Empire Wind
King Charles says Canada will be energy ‘superpower’
Projects in ex-colonies should count toward EU climate goal, Portugal says
Nepal vows to protect Himalayas during climbers gathering
Tesla sales plummet in Europe as Musk backlash hardens
India debuts new weather model to help farming, flood control
MIT D-Lab students design global energy solutions through collaboration
This semester, MIT D-Lab students built prototype solutions to help farmers in Afghanistan, people living in informal settlements in Argentina, and rural poultry farmers in Cameroon. The projects span continents and collectively stand to improve thousands of lives — and they all trace back to two longstanding MIT D-Lab classes.
For nearly two decades, 2.651 / EC.711 (Introduction to Energy in Global Development) and 2.652 / EC.712 (Applications of Energy in Global Development) have paired students with international organizations and communities to learn D-Lab’s participatory approach to design and study energy technologies in low-resource environments. Hundreds of students from across MIT have taken the courses, which feature visits from partners and trips to the communities after the semester. They often discover a passion for helping people in low-resource settings that lasts a lifetime.
“Through the trips, students often gain an appreciation for what they have at home, and they can’t forget about what they see,” says D-Lab instructor Josh Maldonado ’23, who took both courses as a student. “For me, it changed my entire career. Students maintain relationships with the people they work with. They stay on the group chats with community members and meet up with them when they travel. They come back and want to mentor for the class. You can just see it has a lasting effect.”
The introductory course takes place each spring and is followed by summer trips for students. The applications class, which is more focused on specific projects, is held in the fall and followed by student travel over winter break.
“MIT has always advocated for going out and impacting the world,” Maldonado says. “The fact that we can use what we learn here in such a meaningful way while still a student is awesome. It gets back to MIT’s motto, ‘mens et manus’ (‘mind and hand’).”
Curriculum for impact
Introduction to Energy in Global Development has been taught since around 2008, with past projects focusing on mitigating the effects of aquatic weeds for fisherman in Ghana, making charcoal for cookstoves in Uganda, and creating brick evaporative coolers to extend the shelf life of fruits and vegetables in Mali.
The class follows MIT D-Lab’s participatory design philosophy in which students design solutions in close collaboration with local communities. Along the way, students learn about different energy technologies and how they might be implemented cheaply in rural communities that lack basic infrastructure.
“In product design, the idea is to get out and meet your customer where they are,” Maldonado explains. “The problem is our partners are often in remote, low-resource regions of the world. We put a big emphasis on designing with the local communities and increasing their creative capacity building to show them they can build solutions themselves.”
Students from across MIT, including graduates and undergraduates, along with students from Harvard University and Wellesley College, can enroll in both courses. MIT senior Kanokwan Tungkitkancharoen took the introductory class this spring.
“There are students from chemistry, computer science, civil engineering, policy, and more,” says Tungkitkancharoen. “I think that convergence models how things get done in real life. The class also taught me how to communicate the same information in different ways to cater to different people. It helped me distill my approach to what is this person trying to learn and how can I convey that information.”
Tungkitkancharoen’s team worked with a nonprofit called Weatherizers Without Borders to implement weatherization strategies that enhance housing conditions and environmental resilience for people in the southern Argentinian community of Bariloche.
The team built model homes and used heat sensing cameras to show the impact of weatherization strategies to locals and policymakers in the region.
“Our partners live in self-built homes, but the region is notorious for being very cold in the winter and very hot in the summer,” Tungkitkancharoen says. “We’re helping our partners retrofit homes so they can withstand the weather better. Before the semester, I was interested in working directly with people impacted by these technologies and the current climate situation. D-Lab helped me work with people on the ground, and I’ve been super grateful to our community partners.”
The project to design micro-irrigation systems to support agricultural productivity and water conservation in Afghanistan is in partnership with the Ecology and Conservation Organization of Afghanistan and a team from a local university in Afghanistan.
“I love the process of coming into class with a practical question you need to solve and working closely with community partners,” says MIT master’s student Khadija Ghanizada, who has served as a teacher’s assistant for both the introductory and applications courses. “All of these projects will have a huge impact, but being from Afghanistan, I know this will make a difference because it’s a land-locked country, it’s dealing with droughts, and 80 percent of our economy depends on agriculture. We also make sure students are thinking about scalability of their solutions, whether scaling worldwide or just nationally. Every project has its own impact story.”
Meeting community partners
Now that the spring semester is over, many students from the introductory class will travel to the regions they studied with instructors and local guides over the summer.
“The traveling and implementation are things students always look forward to,” Maldonado says. “Students do a lot of prep work, thinking about the tools they need, the local resources they need, and working with partners to acquire those resources.”
Following travel, students write a report on how the trip went, which helps D-Lab refine the course for next semester.
“Oftentimes instructors are also doing research in these regions while they teach the class,” Maldonado says. “To be taught by people who were just in the field two weeks before the class started, and to see pictures of what they’re doing, is really powerful.”
Students who have taken the class have gone on to careers in international development, nonprofits, and to start companies that grow the impact of their class projects. But the most immediate impact can be seen in the communities that students work with.
“These solutions should be able to be built locally, sourced locally, and potentially also lead to the creation of localized markets based around the technology,” Maldonado says. “Almost everything the D-Lab does is open-sourced, so when we go to these communities, we don’t just teach people how to use these solutions, we teach them how to make them. Technology, if implemented correctly by mindful engineers and scientists, can be highly adopted and can grow a community of makers and fabricators and local businesses.”
Keeping forests on the agroforestry agenda
Nature Climate Change, Published online: 28 May 2025; doi:10.1038/s41558-025-02344-8
Emerging agroforestry initiatives focus on planting trees rather than managing existing forestland. The result is a missed opportunity to support forest ecosystems, rural livelihoods and climate mitigation.